NASA UAS Integration Into the NAS Project
Human Systems Integration

AUVSI
May 5, 2016

Jay Shively (Robert.J.Shively@NASA.GOV)
NASA Ames Research Center
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
Simulation Environment: LVC Architecture

SaaProc Input:
- Traffic
- Ownship

SaaProc Output:
- Intruders
- Saa Threat Alerts and Resolutions

VSCS Input:
- Intruders
- SAA Threat Alerts

VSCS Output:
- Ownship

LVC Gateway

Stratway Input:
- Intruders
- Ownship

Stratway Output:
- Stratway Bands Msg

SaaProc/JADEM (sensor model)

Ownship:
- Flt State, Flt Plan, Traj. Intent

Traffic:
- Flt State, Flt Plan, Traj. Intent

SaaProc Output:
- Intruders
- Saa Threat Alerts and Resolutions

VSCS Input:
- Intruders
- SAA Threat Alerts

VSCS Output:
- Ownship

LVC Gateway

Adrs (LaRC)

Adrs Output:
- Traffic
- Ownship

Stratway Bands

Gcs (MacS)

Gcs Output:
- Stratway

Stratway Input:
- Intruders
- Ownship

Stratway Output:
- Stratway Bands Msg

Atc & Ppilots Input:
- Ownship

Atc & Ppilots Output:
- Traffic
Project Background

• Approach: Conduct a series of iterative human in the loop experiments, in a representative simulation environment, with different display configurations to objectively measure pilot performance when maintaining well clear from scripted conflicts
 – **Key metrics**: pilot response time, losses of well clear, severity of losses of well clear
 – Three simulations have been conducted: PT4, iHITL, PT5
 • Displays are modified/improved/changed based on data/observations
 • Displays are carried through to new HITLs to create anchors or linkages to previous data for comparison
 • New displays are developed for test
 • Test/simulation environment/protocols also updated and improved between HITLs
 – Two “mini-HITLs” (i.e., engineering evaluations)
 • TCAS interoperability
 • Missing Information
Project Background

- **Display Types:**
 - **Informative:** Provides essential information of a hazard that the remote pilot may use to develop and execute an avoidance maneuver. *No maneuver guidance or decision aiding is provided to the pilot.*

 - **Suggestive:** *Provides a range of potential resolution maneuvers to avoid a hazard with manual execution.* An algorithm provides the pilot with maneuver decision aiding regarding advantageous or disadvantageous maneuvers.

 - **Directive:** *Provides specific recommended resolution guidance to avoid a hazard with manual or automated execution.* An algorithm provides the pilot with specific maneuver guidance on when and how to perform the maneuver.
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
DAA Guidance Display

Green Bands

No Green Bands
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• **Well Clear Recovery logic/display**
• Pilot response timeline
 – Derived RADAR Requirements
Loss of Well Clear Guidance

Horizontal Guidance

Vertical Guidance

Limited Suggestive
Loss of Well Clear: Directional

Horizontal Guidance

Vertical Guidance

Directional
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
Latest Display

- **Auditory Alert**
 - RA sense presented aurally
 - (source: TCAS II v7.1)

- **Text Based**
 - RA sense shown in text box next to Baseball Card

- **Vertical Rate Guidance**
 - Presented within VVI
 - Green = desired vertical speed
 - Red = vertical speed to avoid

"CLIMB, CLIMB"
TCAS Interoperability

• A TCAS Interoperability Workshop was held to determine potential display/alerting/guidance issues that could be explored in a NASA “mini” HITL
 – Development of a DAA-TCAS Interoperability concept
 – Prioritized list of independent variables for experimental design
 – Set of use cases to stress TCAS Interoperability

• Main Issues for DAA-TCAS Interoperability
 – TCAS is not aware of all aircraft and so can give guidance that causes conflicts with non-cooperative aircraft
 – DAA system is aware of all aircraft and must conform to TCAS functioning
 • Key interoperability issues with DAA during “well clear recovery”
 – When a loss of well clear can no longer be avoided
 • Urgency of well clear penetration and need to interoperate with TCAS drives a directive or limited suggestive guidance solution
TCAS Interoperability

• DAA-TCAS Interoperability Concept:
 – Any target with an active corrective RA should be removed from all DAA guidance calculations
 • Horizontal DAA guidance will be shown for non-RA aircraft
 • All DAA vertical guidance should be *suppressed* during a corrective RA to prevent showing conflicting guidance to the pilot
 – During a preventive RA, TCAS guidance should be an input to the DAA vertical guidance so that it is consistent
 – Well clear recovery is limited to horizontal only for cooperative intruders
 • Prevents pilots from making maneuvers near the collision avoidance boundary which may degrade TCAS II performance

• Purpose of HITL:
 1. Examine performance difference for different methods of showing well clear recovery and DAA guidance
 2. Test overall suitability of interoperability concept
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
DAA-TCAS Alerting Structure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Buffered Well Clear Criteria</th>
<th>Alerting Time Threshold</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCAS RA</td>
<td>• Immediate action required
• Comply with RA sense and vertical rate
• Notify ATC as soon as practicable after taking action</td>
<td>(Driven by TCAS-II)</td>
<td>x</td>
<td>“Climb/Descend”</td>
</tr>
<tr>
<td></td>
<td>DAA Warning Alert</td>
<td>• Immediate action required
• Notify ATC as soon as practicable after taking action</td>
<td>DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec</td>
<td>25 sec (TCPA approximate: 60 sec)</td>
<td>“Traffic, Maneuver Now”</td>
</tr>
<tr>
<td></td>
<td>DAA Corrective Alert</td>
<td>• On current course, corrective action required
• Coordinate with ATC to determine an appropriate maneuver</td>
<td>DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec</td>
<td>55 sec (TCPA approximate: 90 sec)</td>
<td>“Traffic, Avoid”</td>
</tr>
<tr>
<td></td>
<td>DAA Preventive Alert</td>
<td>• On current course, corrective action should not be required
• Monitor for intruder course changes
• Talk with ATC if desired</td>
<td>DMOD = 1.0 nmi
HMD = 1.0 nmi
ZTHR = 700 ft
modTau = 35 sec</td>
<td>55 sec (TCPA approximate: 90 sec)</td>
<td>“Traffic, Monitor”</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
<td>• No action expected</td>
<td>Within surveillance field of regard</td>
<td>x</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TCAS RA (Driven by TCAS-II)
Video Demo
Summary of Contributions

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
Self-Separation Timeline

- Time until CPA:
 - Well Clear Threshold (~35 sec)
 - Aircraft Maneuver Time (~30 sec)
 - Pilot Response Time (~15 sec)
 - ATC Interaction Time (~10 sec)

- Latency

TOTAL RESPONSE TIME:
- Detect Intruders
- Pilots Determine Resolution
- Negotiate Clearance with ATC and uplink maneuver to aircraft

Approximate detection range = 8 nm
Approximate detection range = 6 nm

19
Pilot-DAA Timeline

- **Traffic Display Alert (SS or CA)**: T_0
- **Pilot Notifies ATC**: T_1
- **ATC Approval**: T_2
- **Pilot Initiates Edit**: T_3
- **Pilot Uploads First Edit**: T_{4a}
- **Pilot Uploads Final Edit**: T_{4b}
- **Traffic Alert Removed**: T_5
- **UAS Completes Maneuver**: T_6

Key Times:

- **Initial Response Time**
- **Clearance Approval Time**
- **Total Response Time**
- **Alert Duration Time**
- **Compliance Time**
- **Total Edit Time (Final Upload)**
- **Initial Edit Time (First Upload)**
- **Notification Time**

Time Differences:

- **Notify vs Upload Time**
- **Approval vs Upload Time**

Activities:

- **Pilot Uploads**
- **ATC Approval**
- **Traffic Display Alert**

Event Blocks:

- **Compliance Time**
- **Alert Duration Time**
- **Total Response Time**
- **Aircraft Response Time**

Notes:

- **Total Edit Time (Final Upload)**
- **Approval vs Upload Time**
- **Notify vs Upload Time**
Summary

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
RTCA SC 228

• Phase 1 MOPS – Final Aug 2016
 – Alerting
 – Guidance
 – Displays
Next Steps

• Support SC 228 Phase 2 MOPS
 – Terminal Areas
 – ACAS-Xu
 – Alternative Sensors
 – GBSAA
 – Mid-size A/C
• Support ICAO – RPAS - Human In The System (HITS) working group
• “Common” GCS
• GCS Guidelines
Questions?