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Interest in the characterization of the aerodynamic drag performance of acoustic liners 

has increased in the past several years. This paper details experiments in NASA Langley’s 

Grazing Flow Impedance Tube to quantify the relative drag of several conventional 

perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter 

and cavity depth are varied to study the effect of each. These configurations are selected to 

span the range of conventional liner geometries used in commercial aircraft engines. 

Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 

at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate 

a resistance factor (λ) for each configuration. Analysis shows a correlation between perforate 

hole size and the resistance factor but cavity depth seems to have little influence. Acoustic 

effects on liner drag are observed to be limited to the lower Mach numbers included in this 

investigation.  

Nomenclature 

a = duct width 

b = duct height 

dh = duct hydraulic diameter 

Dliner = total liner drag 

Dpressure = pressure drag 

Dskin friction = skin friction drag 

γ = ratio of specific heats 

λ = resistance factor 

l = length of core chambers (cavity depth) 

k = free space wavenumber 

M = centerline flow Mach number 

pstatic = static pressure, absolute 

p = static pressure, differential 

q = dynamic pressure 

x = streamwise duct coordinate 

I. Introduction 

n the past, the aerodynamic drag imparted by placing acoustic liners in an aircraft engine was tolerated as a 

necessary penalty in order to meet the required certification noise levels. It is generally accepted that such liners 

inevitably increase drag relative to when those same areas are covered with a smooth surface.
1
 Research by Drouin 

has also shown that liner drag can also be influenced by the ambient acoustic field.
2
 If this acoustic effect results in 

significant additional drag, new constraints may be required on liner designs to mitigate the associated fuel burn 

penalty. New aircraft propulsion concepts (open-rotor, distributed electric) may lead to airframe designs where 

external liners are required to meet community noise goals.
3
 Thus, a better understanding of the magnitude of the 

drag penalty associated with acoustic liners is required to rank their importance in developing drag reduction 

techniques for future aircraft. The purpose of the current study is (1) to validate a test method for evaluation of liner 

drag, and (2) to conduct tests to investigate the drag penalty for conventional, perforate-over-honeycomb liners. The 
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eventual goal is to fabricate and test more radical concepts that vary the perforation geometry and may offer some 

drag reduction benefits. Advances in three-dimensional (3-D) printing allow for parametric studies of these concepts 

to develop an empirical database of geometric variations ahead of the formulation of analytical models of liner drag. 

Due diligence, however, must be given to verify the acoustic performance of these printed liners ensuring that the 

relevant physics are captured. Thus, an additional goal of this study is to compare predicted and educed impedance 

spectra for these conventional liners employing printed facesheets to verify construction methods in addition to the 

aerodynamic measurements.  

 

II. Liner Drag Measurements 

Liner drag can be separated into two components as shown in Eq. 1, 

 

                                    ( 1 ) 

where the skin friction component is primarily due to the shear stress between the flow and the liner surface 

(facesheet) which acts like a distributed roughness. The pressure component is dominated by the hydrodynamic 

effect of flow into and out of the liner cavities and facesheet orifices. Various methods have been employed in the 

past to measure these quantities in grazing flow. Direct measurements of total drag can be performed using a force 

balance approach as in Wilkinson.
4 

Indirect methods also exist that look at changes to the surface boundary layer 

profile such as the momentum thickness and Clauser-type, law-of-the-wall analysis of Roberts.
5
 

 For this investigation, the relative drag of each configuration will be determined by measuring differences in the 

static pressure drop along the duct wall opposite of the liner sample. This method can be applied to small ducts with 

fully-developed, turbulent flow and is similar to Nikuradse’s approach when studying roughness in pipes.
6
 With the 

static pressure data and some flow parameters, one can compute the duct’s resistance factor, λ (also known as the 

‘friction factor’), given by the following: 

 

  
  

  

  

 
 ( 2 ) 

using the hydraulic diameter of the flow duct for dh: 

 

   
   

   
 ( 3 ) 

and the compressible form for q: 

  
 

 
        

 
 ( 4 ) 

 The non-dimensional nature of λ allows the static pressure data to be normalized; taking out the run-to-run 

effects of slightly varying duct Mach number and static pressure. 

III. Experiment 

The experimental investigation involves testing of three liner facesheet configurations in conjunction with two 

liner cores in the NASA Langley Grazing Flow Impedance Tube (GFIT). For each facesheet/core combination, a 

static pressure survey is performed along the length of the GFIT along with a higher accuracy measurement of the 

static pressure drop across the liner. A hardwall sample (HW) is included to provide a reference baseline. 

A.  Facesheet Construction 

Each sheet has a constant 8 percent open area (POA) and a sheet thickness of 1.0 mm. Three perforate sizes of 

nominally 1.0 mm, 0.7 mm and 0.5 mm diameter are evaluated. They are labeled S1, S2 and S3, respectively. The 

active area for each facesheet is nominally 50.8 mm x 435.2 mm with overall dimensions of 64.0 mm. x 460.8 mm. 

Figure 1 shows S1 placed on top of one of the core cavities. Figure 2 is a close-up of the three facesheets showing 

relative differences in hole size and spacing. The facesheets were 3-D printed from photopolymer resin using a 

stereolithography (SLA) process with the flow surface sanded to ensure a smooth finish. 
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B.  Liner Core Construction 

These facesheets were used over two metallic liner cores of similar construction (same outer dimensions and 

honeycomb cell size) but with different honeycomb cavity depths. The liner cores were components from a previous 

investigation that were repurposed for this experiment. Core C1 has a cavity depth of 38.1 mm while C2 uses a 76.2 

mm deep honeycomb. Figure 3 shows photos of the two liner cores to highlight the internal construction and relative 

depths. To allow for rapid changes of liner configuration, the facesheets are not bonded to the core structure but 

clamped by their long edges as part of installation in the test rig.  

 

 
 

Note that the cores were constructed for the full length of the GFIT test window (614.4 mm) while the facesheets are 

only 460.8 mm long. A filler blank was fabricated from the same resin as the facesheets to cover the remaining 

portion of the core. A summary of the key parameters for each liner configuration is given in Table 1. 

 
 

Figure 3. Liner sample core cavities C1 (lower) and C2 (upper) with internal honeycomb. 

 
 

Figure 2. Liner sample facesheets S1 (left), S2 (center) and S3 (right) detail. 

 
 

Figure 1. Sample facesheet S1 overlaid on a core cavity. 
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C.  Grazing Flow Impedance Tube (GFIT) 

The Grazing Flow Impedance Tube (GFIT) is a unique facility originally constructed to determine the acoustic 

characteristics of noise reduction treatments for aircraft jet engine nacelles and nozzles. The facility is a small wind 

tunnel with a 50.8 mm by 63.5 mm rectangular cross section. The flow path (see Figure 4) is a straight duct with a 

12-driver upstream acoustic source section, interchangeable lengths of blank duct, a test section holding the liner 

sample and an array of 95 measurement microphones leading to a 6-driver downstream source section and anechoic 

terminating diffuser. Pressurized, heated air is supplied to the entrance of the GFIT while a vacuum system is used at 

the duct exit to ‘pull’ the flow out of the tube. This arrangement allows for the static pressure at the test section to be 

near ambient at all flow velocities while also creating an adiabatic wall condition. In its current configuration, 

samples can be tested at grazing flow velocities from 0 to Mach 0.6 and sound pressure levels up to 150 dB for the 

frequency range between 400 and 3000 Hz. 

 

 
 

This investigation also makes use of the array of 80 static pressure ports located along the lower wall of the duct 

to measure the axial pressure distribution. Pressures from these ports are simultaneously sampled by a series of 

transducers with a +/- 17 kPa range and 0.05% FS accuracy with a fixed sample rate of 100 Hz. Figure 5 shows a 

representative plot of the complete GFIT static pressure distribution for the baseline smooth hardwall case. The 

transition from positive to negative pressure nominally occurs at the center of the test section (x = 4.343 m).  

 
A plot of the axial pressure distribution in the test section for the hardwall case is shown in Figure 6. Two ports, one 

located near the entrance and the other located near the exit of the test section (separated axially by 1.07 m) are also 

connected to a high-accuracy, differential pressure gauge to measure the static pressure drop between these two 

locations. This gauge samples at a much slower rate (~10 Hz) but with its smaller 0-6900 Pa range and 0.01% FS 

accuracy, measurement uncertainty is reduced by a factor of 12.5. A sketch of the test section is included above the 

plot showing the relative location of the liner and the ports used to compute the static pressure drop (∆P). The high-

resolution measurement points are designated as Port 37 and Port 59, respectively. 

 
Figure 5. GFIT Static Pressure Distribution, Hardwall sample, M=0.5, No Acoustic Excitation. 
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Figure 4. Sketch of the NASA Langley Grazing Flow Impedance Tube (GFIT). 

Flow

 
Table 1. Liner sample parameters. 

Configuration S1C1 S1C2 S2C1 S2C2 S3C1 S3C2

Hole diameter (mm) 1.0 1.0 0.7 0.7 0.5 0.5

Cavity depth (mm) 38.1 76.2 38.1 76.2 38.1 76.2
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D. Measurement Process 

 Averaged static pressure measurements were made for each configuration with no acoustic excitation at M=0.1, 

0.3 and 0.5. For each data set, 1000 readings from each static port were made over a nominal 40 sec period then 

averaged to give one measurement per port. Simultaneously, similar data were acquired from the high-accuracy 

gauge to provide the static pressure drop across the length of the liner. For all cases, the target Mach number was 

held to a tolerance of +/- 0.002 while static pressure in the test section was set within +/-130 Pa. Tunnel conditions, 

including average Mach number and static pressure, are also recorded to allow computation of λ from Eq. 2. Use of 

a non-dimensional coefficient like λ provides a benefit by normalizing the static pressure data. This normalization 

reduces the variability of the results, allowing comparison of data from different flow runs where static pressure and 

Mach number differences (albeit small) can affect the raw ∆P measurements. An example of this variation is shown 

in the left plot of Fig. 7 with a graph of ∆P measurements from the hardwall case at nominally M=0.5. The existence 

of a relationship between Mach number and ∆P is readily apparent. Computation of λ from this data results in the 

plots shown in the right plot of Fig. 7. 

 

              
Figure 7. Liner ∆P measurements and corresponding values of λ, Hardwall sample, M=0.5. 
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Figure 6. GFIT Test Section Static Pressure Distribution, Hardwall sample, M=0.5. 
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The calculated values of λ are independent of the small Mach number changes observed while variability of the 

results about the mean is nominally 0.1%, indicating excellent repeatability. Comparisons with other flow speeds 

show variability decreasing with increasing Mach number, since ∆P increases while the accuracy of the pressure 

gauge is fixed as a percentage of its range. Note that values of λ derived from GFIT pressure measurements cannot 

be directly related to values of Darcy’s friction factor commonly found on a Moody chart. Only a portion of the duct 

surface is lined and, depending upon M and the axial location of the test section, the flow may not be fully 

developed. 

Tonal acoustic excitation was additionally used for M=0.1 to M=0.5 (0.2 increments) for frequencies between 400 

and 2800 Hz (400 Hz increments) at a sound pressure level (SPL) of 140 dB (re 20Pa). In those cases, static 

pressure measurements were performed to evaluate the effect of acoustic excitation on liner drag. Acoustic 

measurements at M=0.0 were also performed to allow for comparison of liner impedances educed using the method 

of Watson
7
 to the Two-Parameter prediction model provided by Jones.

8,9
 Good comparison would improve 

confidence that the liner fabrication method (printed facesheets laid over a core) gives results similar to a 

conventional, fully-bonded, perforate-over-honeycomb construction.  

IV. Results and Discussion 

A. Static Pressure Measurements 

Results of the static pressure measurements for each configuration are shown in Figure 8 for M=0.3 and M=0.5. 

The differences between the various configurations are small, varying by less than 50 Pa at M=0.3 to 120 Pa at 

M=0.5 (excluding the HW case). The static pressure drop does increase with increasing Mach number as expected 

and one can see the difference grow between the HW baseline and the liner configurations as M increases. The 

hardwall case produces the least pressure drop, as expected, while the remaining cases rank order by hole diameter 

with the smallest hole diameter producing the lowest pressure difference at both Mach numbers. Cavity depth effects 

on the measured pressure drop were minimal for all cases, implying that the facesheet geometry dominates the drag. 

In Fig. 8, there are two plotted values for configurations using the S3 facesheet denoted by an asterix (*). During 

testing, it was observed that the downstream edge of the filler blank covering the last 152.4 mm of the core had 

bowed laterally downward into the flow causing a backward-facing step. This protrusion increased the measured 

pressure drop to a level comparable with the S2 configurations. The results were incongruent with expected trends 

and outside of measurement error band (+/- 0.7 Pa). The other configurations were tested significantly earlier (due to 

manufacturing complications with the S3 facesheet) and were not observed to have this bowing issue. A stiffer, 

metal filler blank was fabricated as a replacement and tested with the S3C1 configuration which reduced the 

measured pressure drop. Time restrictions prevented retesting for the S3C2 configuration. 

 

 
Using the pressure data and tunnel conditions to calculate λ results in Fig. 9 for the same Mach numbers and liner 

configurations. Values for the resistance factor decrease with increasing Mach number as shown by Nikuradse and 

the hardwall baseline produces the lowest values. As was observed for ∆P, λ decreases with decreasing hole 

diameter while changing cavity depth seems to have minimal effect on the computed resistance factor. The 

uncertainty of λ is of such small magnitude that error bars were not included in the figure. It should be noted that 

              
Figure 8. Measured static pressure drop (∆P) for each liner configuration (no sound). 
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variations between facesheets are significantly larger than measurement uncertainty while cavity depth effects are 

statistically insignificant.  

 

B. Acoustic Measurements 

Each liner configuration was tested in the presence of acoustic excitation at M=0.1, 0.3 and M=0.5 over the 

frequency range of 400 Hz to 2800 Hz with a SPL of 140 dB. Configurations with the C1 core also had full acoustic 

pressure profiles acquired at  M=0 for the purposes of  impedance eduction. These educed impedance spectra were 

compared to predictions made using the semi-empirical Two-Parameter model referenced earlier. Figure 10 shows 

results of this comparison for the S1C1 configuration. Good agreement is observed between the measured data and 

predictions. The largest divergence comes at the lowest frequency where liner attenuation is small making accurate 

eduction more difficult. The resistance spectrum is fairly flat across the entire frequency range while the reactance 

has the expected -cot(kl) shape.  

 
 Figure 11 shows similar results for the S2C1 liner but with a greater discrepancy in resistance at the lowest 

frequency. Unlike the previous comparisons, results from S3C1 (Fig. 12) show a marked difference between the 

predicted and measured reactance. The measured values are lower than the predictions, particularly at the highest 

frequencies. This result would suggest the predicted anti-resonance frequency is lower than the measured one. 

Perforate hole size for this configuration (0.5 mm) was near the performance limit of the 3-D printer and although 

nominal hole size was verified using selected pin gage measurements, variability between holes over the length of 

the sample may be the cause of the difference. Overall, agreement between measurements and predictions was very 

good, especially for hole diameters greater than 0.5 mm. This gives confidence that 3-D printed liner facesheets, 

overlaid without bonding to the liner core, can produce acoustic results comparable to conventionally fabricated 

 
Figure 10. Comparison of Educed and Predicted Impedance, M=0.0, S1C1, 140 dB. 
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Figure 9. Resistance factor (λ) for each liner configuration (no sound). 
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liners. Such fabrication techniques will allow for rapid testing of facesheet geometries not easily duplicated by 

conventional machining. 

 
 

 

C.  Effects of Acoustic Excitation on λ 

Each liner configuration was evaluated in the presence of acoustic tonal excitation at an SPL of 140 dB from 400 

Hz to 2800 Hz in 400 Hz increments to determine any effect on λ and, hence, drag. Results are shown at three Mach 

numbers: 0.1, 0.3 and 0.5 for each configuration. Figure 13 is a plot of resistance factor versus tone frequency for 

the S1 (largest hole) liners. For M=0.1, there is significant variability in λ with frequency at this sound pressure level 

but that effect seems to diminish entirely once the flow speed is raised to M=0.3. Data at M=0.5 shows similar 

insensitivity. Reducing hole size for the S2 liners does not seem to change the observed trends from the S1 

configurations as shown in Fig. 14. Results from the S3 (smallest hole) configurations are given in Fig. 15 and are 

similar to the previous plots save for the S3C2 configuration at 1600 Hz. There, the computed value for λ is 

substantially higher than the rest of the M=0.5 values and even slightly higher than the M=0.3 values. Further 

scrutiny revealed that this data point was acquired during a series of repeat runs at selected frequencies necessary to 

fill in missing data due to an acquisition code malfunction. Thus, the data were acquired using the same bowed filler 

blank noted earlier. It was included to further show the effect of the bow and the importance of proper sample 

mounting while giving confidence that the rest of the dataset was unaffected.  

The insensitivity to acoustic excitation observed at higher Mach numbers is a desirous result given the need for 

low cruise drag where flow Mach numbers in an engine inlet would likely be in a high subsonic range. At those 

Mach numbers, the required SPL to influence liner drag may be higher than levels typically found in a turbofan 

 
Figure 12. Comparison of Educed and Predicted Impedance, M=0.0, S3C1, 140 dB. 
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Figure 11. Comparison of Educed and Predicted Impedance, M=0.0, S2C1, 140 dB. 
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engine. If inlet SPL’s are sufficiently low, liner designs will not have to account for drag variation with frequency, 

thus reducing the number of optimization parameters required. 

 

 

 

 

 
Figure 15. Resistance factor (λ) variation with source frequency and Mach number, S3 facesheet, 140 dB. 
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Figure 14. Resistance factor (λ) variation with source frequency and Mach number, S2 facesheet, 140 dB. 
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Figure 13. Resistance factor (λ) variation with source frequency and Mach number, S1 facesheet, 140 dB. 
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V. Concluding Remarks 

An investigation was performed in the NASA Langley Grazing Flow Impedance Tube (GFIT) to evaluate the 

effects of perforate hole size and cavity depth on liner drag with and without acoustic excitation. Three facesheets 

were constructed of plastic resin using an stereolithography manufacturing process with three perforate hole 

diameters. These facesheets were overlaid on two conventional, metallic cores of differing depths to form six 

configurations. A hardwall sample was also included as a baseline case. Static pressure and acoustic pressure 

measurements were acquired for each configuration at Mach numbers up to M=0.5 with sound from 400 to 2800 Hz 

at 140 dB SPL. Educed impedances from the acoustic results at M=0.0 were compared to analytical predictions to 

evaluate the efficacy of the liner construction method. Analysis of the resulting data led to the following 

observations: 

 

1. The static pressure drop, ∆P, measurement method detailed in this investigation can be used to determine the 

relative drag of various liner configurations in the GFIT. The simplicity of this method lends itself to rapid 

assessment of multiple liner configurations. 

 

2. Use of the non-dimensional resistance factor, λ, in place of the measured ∆P, removes the effects of varying 

flow conditions that could result in day-to-day repeatability issues. 

 

3. Increasing facesheet hole size increases the computed resistance factor values. 

 

4. No significant effect on resistance factor was observed by varying the core depth for tests with no acoustic 

excitation. With excitation, there is a frequency-dependent variation in resistance factor, but the effect is 

reduced with increasing Mach number. 

 

5. Predicted impedance spectra agreed closely with educed impedances from measured data, giving confidence 

that printed facesheets can be used to fabricate liners having acoustic characteristics similar to those of 

conventional construction. 

 

 Additional work is needed to relate relative differences in resistance factor to relative differences in liner drag. 

Ideally, values of the resistance factor could be correlated to absolute drag/unit area values. This result would 

require calibration liners tested in other facilities capable of performing direct measurements using a force balance. 
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