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A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6
Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-
induced breakdown plasma. The plasma then cools, creating a freestream thermal distur-
bance that can be used to study receptivity. The freestream disturbance convects down-
stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse
pressure gradient created by the flare of the model is capable of generating second-mode
instability waves that grow large and become nonlinear before experiencing natural tran-
sition in quiet flow. The freestream laser perturbation generates a wave packet in the
boundary layer at the same frequency as the natural second mode, complicating time-
independent analyses of the effect of the laser perturbation. The data show that the laser
perturbation creates an instability wave packet that is larger than the natural waves on
the sharp flared cone. The wave packet is still difficult to distinguish from the natural
instabilities on the blunt flared cone.

Nomenclature

f frequency, kHz
p pressure, kPa
rn nosetip radius, mm
Re/m freestream unit Reynolds number, m-1

t time after tunnel starts, s
tp time after laser pulse is fired, µs
T temperature, K
x distance from nosetip, mm
θ azimuthal angle around cone, degrees
ρ density, kg/m3

Subscript

0 stagnation condition
i initial condition
s surface condition

Superscript
′ fluctuation

Abbreviations

FFT fast Fourier transform
RMS root-mean-square
STFT short-time Fourier transform

I. Introduction

Receptivity, as termed by Morkovin in his 1969 review of transition,1 is the process by which freestream
disturbances enter the boundary layer. When these disturbances enter the boundary layer, they can excite
instabilities. These instabilities affect the transition process by growing to create large fluctuations in the
boundary layer, which can eventually break down into turbulence.

Receptivity studies can be used to help determine the initial amplitudes of the instabilities. If the
receptivity process can be better understood, then a finite-amplitude-based method of transition prediction
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can be developed. Some of the work toward achieving such prediction methods is discussed in Refs. 2 and
3. Amplitude-based prediction methods incorporate more physics than the commonly used empirical and
semi-empirical methods. While the empirical and semi-empirical methods work for some cases, many were
developed for application to specific geometries or conditions.

Most of the existing studies of high-speed receptivity are computational or theoretical. These studies are
typically of planar acoustic waves,4, 5 vorticity waves,6 small thermal disturbances,7, 8 and particles.9 There
are some experimental studies in high-speed flow,6, 10–12 but experiments matching the conditions in the
computational and theoretical studies has not been possible. For example, experimental measurements of
the effect of particles in a quiet facility would likely damage the highly-polished nozzle and are therefore
not feasible. Furthermore, freestream inputs are difficult to characterize through measurement, so the
computational and theoretical models of experiments necessarily lack the complete experimental conditions.
Thus, computations and theory must estimate these conditions as best as possible to help supplement the
experiments. The best understanding of receptivity requires the cooperation of computational, theoretical,
and experimental efforts.

A controlled freestream disturbance was created in the Boeing/AFOSRMach-6 Quiet Tunnel (BAM6QT)
at Purdue University to study the receptivity of the boundary layer to a large, discrete thermal disturbance.
Similar computations for a very small thermal disturbance were performed by Huang et al.13 As in previous
studies at Purdue University, this disturbance was generated by focusing a high-powered laser to create
laser-induced breakdown of a small region of air.11, 14, 15 Characteristics of this disturbance were measured
with pressure sensor probes.16 The disturbance was eventually allowed to convect downstream to a flared
cone model and its effect was measured with several surface-mounted pressure transducers.17

Previous work showed that the disturbance produced a wave packet.17 This wave packet convected in the
boundary layer at nearly the same speed as the boundary-layer edge velocity. As the wave packet convected
downstream, it grew linearly, became nonlinear, and eventually broke down. At similar freestream densities,
the wave packet appeared to be much larger on the sharp flared cone than on the blunt flared cone. The
wave packet was barely detectable on the blunt flared cone until the last few sensors at the aft end of the
cone. On the sharp flared cone, the wave packet appeared to be fairly nonlinear at even the first sensor
station.

It was difficult to distinguish the wave packet from the naturally-occurring boundary-layer disturbances,
particularly if they were of similar amplitude. Time-frequency analyses are used in this paper to attempt to
separate the natural waves from the laser-induced wave packet. Then, an analysis of the changing frequency
content over time is used to determine the effect of the freestream disturbance.

II. Facility and Apparatus

A. The Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT)

The Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) at Purdue University is a Ludwieg tube that can be
run with laminar nozzle-wall boundary layers (Fig. 1). Laminar nozzle-wall boundary layers are required
to make the BAM6QT a quiet tunnel and are achieved through the use of several features. The surface
of the nozzle is polished to a mirror finish to reduce the likelihood of roughness induced transition. The
nozzle is long to reduce the likelihood of transition due to a growing Görtler instability. The air supply is fed
through a series of 1-µm particle filters and finally through a 0.1-µm filter to reduce the number and size of
particulates in the freestream. A bleed air system also suctions off the air at the nozzle throat to allow for
the growth of a new boundary layer on the diverging portion of the nozzle. Typical run times in the tunnel
last for about 4 s, although a slight increase in the freestream noise has been observed after about 2 s of run
time.18 A model installed in the tunnel starts at room temperature and remains at the same temperature
during these short runs.

B. The Laser Perturber

The laser perturber apparatus creates a perturbation by focusing a high-powered Nd:YAG laser to a small
volume in the freestream of a wind tunnel. An Nd:YAG laser equipped with enhanced spatial mode and an
injection seeder is used in this apparatus. The maximum energy per pulse is typically around 250 mJ for a
7-ns pulse at 10 Hz. The perturbation-forming optics consist of three air-spaced achromatic triplets for YAG
wavelengths. An ionized plasma is created at the focus of this lens system via laser-induced breakdown.
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Figure 1. A schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel.

This plasma cools and a weak shock emanates from the thermal core, but quickly decays. The thermal
perturbation is used as a controlled disturbance and allowed to convect downstream to interact with a test
body, as shown in Fig. 2.

Figure 2. A schematic of the laser perturbation placed upstream of a model in a wind tunnel.

III. Model

The model used for this experiment was a flared cone. This model was designed by Wheaton and Juliano
to have large second-mode waves, as discussed in Ref. 19. The geometry of this model is defined as a body
of revolution bounded by a circular arc with a 3-meter radius. A photograph of the flared cone is shown
in Fig. 3. Two nosetips are available for this model: a 1-mm-radius (blunt) nosetip and a 0.16-mm-radius
(sharp) nosetip. The nosetips are nearly hemispherical and the curvature of the nosetip lies tangent to
the circular-arc flare. The different nosetips have different lengths. Thus, the sensor locations will change
relative to the nosetip, depending on the nosetip used. Previous measurements without the freestream laser
perturbation for the blunt nosetip model are available in Ref. 19 and similar measurements with the sharp
nosetip model are available in Ref. 20.

A total of fourteen PCB 132A31 fast pressure transducers were installed in the cone. Eight of these
piezoelectric pressure transducers were installed along the 0° ray, which faced 180° away from the incoming
Nd:YAG laser beam. Three sensors were installed on each of the other two axial sensor rays at +120° and
−120°. The sensors were sampled at 2 MHz for the entire run. These data were recorded with three digital
phosphor oscilloscopes, which can read and record four different channels. These oscilloscopes each have a
maximum record length of 250 million points. Two have an analog bandwidth of 500 MHz and one has an
analog bandwidth of 1 GHz. Due to the limitation in the number of long-memory oscilloscopes, only a total
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3 m 

Figure 3. A photograph of the 3-m-circular-arc flared cone and PCB sensors.

of 12 of the pressure transducers could be monitored in any given run.

IV. Analysis

The pressure gradient on the flared cone produces naturally large second-mode waves.19, 20 The freestream
laser-generated disturbance generates a wave packet in the boundary layer of the flared cone of the same
frequency as the natural second mode.17 The analysis of the perturbation’s effect on the flared cone boundary
layer is dependent upon the window of samples used. A time-frequency analysis of the data can be performed
to determine the transient effect of the perturbation. This form of analysis can depict the change of the
frequency content of the data over time.

This paper will compare different conditions for each of the two nosetips. Reference 17 showed that
when the conditions for the sharp and blunt nosetip are matched, breakdown of the wave packet occurs on
the sharp nosetip while very little growth of the wave packet on the blunt nosetip is observed. In fact, the
wave packet on the sharp nosetip was already fairly nonlinear by the time the disturbance reached the first
measurement station. Thus, the linear growth of the wave packet was not observed on the sharp flared cone
and an estimate of the initial amplitude of the wave packet was not possible on the sharp flared cone. In
order to better investigate the growth of the wave packet on each cone, two different test conditions were
chosen, one for each nosetip. The condition for the blunt nosetip measurements was at a higher Reynolds
number than the condition for the sharp nosetip measurements. These conditions were chosen so that more
of the growth process of the wave packet could be better observed on each of the cones. At a lower Reynolds
number, more linear growth can be captured on the sharp flared cone. At a higher Reynolds number, more
nonlinear growth can be captured on the blunt flared cone.

Since the wave packet generated by a laser perturbation contains the same frequency content as the
natural waves, it becomes difficult to distinguish between the two when both are of similar amplitude. The
time-frequency analysis aids in distinguishing when the laser-generated disturbance passes by a single sensor.
The frequency content of the perturbation over time can be analyzed by using time-frequency methods such
as the short-time Fourier transform or a wavelet transform. A general uncertainty principle exists for time-
frequency analyses, where resolution of the frequency content will provide poorer resolution of the signal over
time, and vice versa. Generally, the short-time Fourier transforms will have better frequency resolution and
poorer time resolution. On the other hand, wavelet transforms will have better time resolution and poorer
frequency resolution.

A. Power Spectra and Root-Mean-Square

The power spectra shown in this paper are computed by taking a fast Fourier transform (FFT) of a 1000-point
window at some interval of time between laser perturbations. A Blackman windowing function is applied
to the 1000-point window and the FFTs are computed using the Welch spectrum estimation method. The
FFTs from 10 different laser shots are ensemble averaged together to form the power spectra. Previous
analysis in Ref. 17 has shown that the FFTs do not change much during the duration of the run.

The RMS amplitudes of the second mode were calculated by integrating the spectra in a 4-kHz fre-
quency band centered around the indicated frequency, and then taking the square root. The mean flow
and the linear stability of the second-mode frequencies were computed using the formulation described in
Ref. 21. Two-dimensional unsteady compressible Navier-Stokes equations written in cylindrical coordinates
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are solved using a 5th-order weighted essentially non-oscillatory (WENO) scheme for space discretization
and a 3rd-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The stability
computations use linear stability theory. The measured RMS amplitudes were compared to the computations
at the most amplified second-mode frequency band for the conditions given.

The N -factor is defined as:

N = ln
A

A0

(1)

where A is the amplitude of the instability at a given location and A0 is the initial instability amplitude.
The RMS amplitudes are normalized by the calculated RMS amplitude at the first sensor location because
the initial amplitude is unknown. The relationship between this normalized RMS amplitude (A/A1) and the
N -factor is given by

N = ln

(

A

A1

A1

A0

)

= ln
A

A1

+ ln
A1

A0

(2)

where A1 is the RMS amplitude at the first sensor station. The natural logarithm of the normalized RMS
amplitude will be the same scale as the N -factor with some offset defined by the N -factor at the first sensor
station where linear growth is observed. Subsequent plots containing RMS information will have the natural
log of the normalized RMS and an appropriate offset so that the measured data can be plotted to compare
to the computations. In these comparisons, the computations were performed at the same conditions as the
experiment. The grids used for the sharp flared cone and the blunt flared cone were about 6000 points in
the streamwise direction and up to 500 points in the wall-normal direction.

B. Short-Time Fourier Transform Analysis

The short-time Fourier transform (STFT) is taken by sliding a window over different portions of the time
data and then taking the FFT of the data in the given window. The frequency content can then be mapped
for a given time window and visualized as a spectrogram. This is essentially a contour plot of the FFTs at
each time window. In the cases shown here, each STFT is computed using 600-point (0.3-ms) Blackman
windows with a 95% overlap. The frequency is given on the vertical axis, and the time after the laser pulse
is fired is given on the horizontal axis. This method of analysis is known for providing better resolution in
the frequency domain than in the time domain.

C. Continuous Wavelet Transform Analysis

A continuous wavelet transform was used to determine changes in frequency over time. Wavelet transforms
allow for the usage of windowing with variable-sized regions, unlike the STFT, which uses a fixed window
over time. Using the algorithm outlined by Jordan et al.,22 a complex Morlet wavelet transform was applied
to the time response measured at each sensor station for a single laser shot. This wavelet transform is
expressed as

W (a, τ) =

∫

∞

−∞

f(t)ψ∗

a,τ (t)dt (3)

The Morlet wavelet is a complex exponential multiplied by a Gaussian window and expressed in the time
domain as

ψ(t) = exp(iωψt) exp(−|t|2/2) (4)

where ωψ = 5.5 was the constant used to satisfy the admissibility condition. This admissibility condition
ensures that once a function is transformed to the wavelet domain, it can be recovered by applying the
inverse wavelet transform. The dilations of the mother wavelet (Equation 4) are given by

ψa,τ = a−1/2ψ

(

t− τ

a

)

(5)

where a−1/2 is a normalization that gives all dilated versions of Equation 4 the same energy and τ is a
shifting property of the transform. The frequency content of the Morlet wavelet transform is expressed here
as the magnitude of the wavelet transform in the following plots.
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V. Wave Packet Development on the Sharp Flared Cone

Figure 4 shows the time response to one laser shot at each sensor location. Each plot shows the unfiltered
time response as well as several bandpass-filtered time responses. These filtered time traces are plotted
with an arbitrary offset from the unfiltered time response. The first band is between 11–130 kHz, which
corresponds to either the expected frequency band of the first mode or the subharmonic of the natural second
mode. The second band is between 130–300 kHz, which corresponds to the expected frequency range of the
natural second mode. The third band is between 300–580 kHz, which corresponds to the first harmonic of
the second mode.

The wave packets at each station appear to consist of multiple “bursts,” where the envelope of the wave
packet has multiple maxima. This is most notable starting at the first sensor station of x = 230.5 mm,
where the wave packet appears to consist of two bursts. At x = 230.5 mm, the frequency content of the
wave packet appears to consist mostly of the second-mode frequencies. At farther downstream stations, the
first harmonic of the second mode appears when the wave packet passes. Finally, at x = 408.6 mm and
farther downstream, there appears to be some increase in the lower frequency band. Previous power spectra
in Ref. 15 suggests that this may be the same location where breakdown begins to occur.

Figure 5 shows the STFT of the measured response of the boundary layer to a wave packet generated
by a freestream laser perturbation. Each sub-figure shows the change in the frequency content over time at
the indicated sensor station. The frequency is given by the vertical axes, the time after a laser pulse is given
by the horizontal axes, and the power of the pressure fluctuations is given by the color bar on the right.
Prior to the passage of the wave packet, before tp = 0.4 ms at all stations, the frequency content shows low
background noise, with a peak at the expected second-mode frequency of about 227 kHz. The presence of
this peak is due to the natural second-mode wave, which is fairly large on this model.20 When the wave
packet arrives at a sensor, the power in the second-mode frequency rises and broadens in bandwidth. As
expected, the wave packet takes longer to arrive as the distance between the sensor and the nosetip increases.
After the wave packet has passed, the frequency content resembles the content prior to the passage of the
wave packet. This shows that the wave packet has a transient effect.

At the most upstream location of x = 230.5 mm (Fig. 5(a)), there is a peak in power near 85 kHz.
The power in the low frequency band of 11–130 kHz is comparatively lower between x = 280.9 mm and
x = 381.6 mm. Previous analysis has shown that breakdown of the wave packet starts to occur near
x = 381.6 mm, which explains the increase in power at the lower frequencies at the aft end of the cone.
The peak in power near 85 kHz at x = 230.5 mm is present before and after the passage of the wave
packet, indicating that this instability is not related to the presence of the freestream laser perturbation. In
fact, a lower-frequency peak at this sensor station has been observed previously in Ref. 20, where no laser
perturbation was placed upstream of the model. The cause of this peak is as of yet unknown.

At farther downstream locations (Figs. 5(b)–5(g)), the presence of a harmonic appears around the same
time as the wave packet. The harmonic of the second mode occurs only when the wave packet passes over
the sensor, indicating that the freestream laser perturbation creates a nonlinear disturbance in the boundary
layer while the natural freestream disturbances at this condition do not. Finally, evidence of breakdown
of the wave packet is observed from x = 408.6–450.5 mm (Figs. 5(f)–5(h)). At these sensor locations, the
broadband frequency content begins to increase in power when the wave packet passes over the sensor. These
characteristics show that the freestream laser perturbation creates a temporary increase in the boundary-
layer disturbance level, and that its effect is transient.

The transient effect of the laser-generated perturbation can also be visualized using a comparison of the
power spectra at different times after the laser pulse is fired. Power spectra taken prior to when a laser shot
is fired are compared to power spectra with windows after a laser shot is fired in Fig. 6. The FFT windows
after the laser shot is fired are centered around the expected arrival time of the wave packet. The electronic
noise at each sensor station is given by the dotted black lines. The power spectrum over a 1000-point window
just prior to when a laser shot is fired (tp = −3.0 to −2.5 ms) is shown by the dot-dashed blue lines. The
power spectrum over a 1000-point window including the wave packet is shown by the solid red lines.

The shape of the spectra in Fig. 6 indicate that without the presence of the wave packet, the harmonics
of the second mode do not develop along the length of the cone. Thus, the natural second-mode instabilities
remain fairly linear along the length of the cone at the tested condition. The shape of the spectra when
FFTs are taken over the wave packet indicate that the wave packet has the same frequency content as the
natural second mode. The wave packet becomes nonlinear by x = 280.9 mm, as indicated by the presence
of higher harmonics in the power spectrum. The wave packet then starts to break down by x = 408.6 mm,
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(h) x = 450.5 mm.

Figure 4. Filtered time traces showing the axial development of a laser-generated wave packet in the boundary
layer of a sharp flared cone: rn = 0.16 mm, p0 = 534.3 kPa, T0 = 428.3 K, ρ∞ = 0.022 kg/m3, Re/m = 5.81× 106/m.
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Figure 5. Short-time Fourier transforms showing the axial development of a laser-generated wave packet in
the boundary layer of a sharp flared cone: rn = 0.16 mm, p0 = 534.3 kPa, T0 = 428.3 K, ρ∞ = 0.022 kg/m3,
Re/m = 5.81× 106/m.
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Figure 6. Comparison of FFTs taken prior to a laser shot (blue) and over a wave packet (red) at each axial
sensor station: rn = 0.16 mm, p0 = 534.3 kPa, T0 = 428.3 K, ρ∞ = 0.022 kg/m3, Re/m = 5.81× 106/m.
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as indicated by the presence of spectral broadening, and is fairly turbulent by the last sensor station of
x = 450.5 mm.

The growth of the instabilities within the second-mode frequency band is distinctly different when the
wave packet is present than when it is not present. A comparison of the computations and measurements
of the growth of the second-mode peak at different frequencies is given in Fig. 7. Three cases are compared
here: when the FFTs used for computing the spectra are taken over a window with no wave packet (open
circles), when the FFTs used for computing the spectra are taken over a window with the wave packet (solid
squares), and for spectra computed for a separate tunnel run without the laser perturber (open triangles).
The growth of the second-mode waves appear to match the computations fairly well when a wave packet is
present in the time traces up until the point where breakdown of the wave packet is observed in the FFTs.
Breakdown is taken to be the point at which the spectral content of the wave packet begins to broaden.
When no wave packet is present, however, the second-mode waves often do not appear to grow much at
all and there is increased scatter in the measured RMS. The measurements of the second mode are smaller
in amplitude without the presence of the freestream laser perturbation, thus, the lack of resolution in the
measurement may be enough to create the scatter observed.
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Figure 7. Comparison of normalized measured RMS pressure at each sensor station on the sharp flared cone
to the computed N factor: rn = 0.16 mm, p0 = 534.3 kPa, T0 = 428.3 K, ρ∞ = 0.022 kg/m3, Re/m = 5.81× 106/m.

The computed RMS amplitudes of the second mode across the entire second mode frequency peak are
given in Table 1. The first column tabulates the RMS amplitudes normalized by the surface pressure at each
sensor station, p′/ps. The surface pressure along the flared cone is not constant due to a pressure gradient
imposed by the geometry of the model. Thus, the second column in Table 1 shows the RMS amplitudes
normalized by the freestream static pressure (p′/p∞), which is constant regardless of the sensor station. The
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spectral broadening in Fig. 6(f) indicates that the packet is starting to break down near x = 408.6 mm.
The RMS amplitude at this location on the sharp flared cone is 12.4%, which is similar to the amplitudes
at breakdown seen by Marineau in Ref. 3 on a 7-degree straight cone. However, the maximum amplitude of
the wave packet only reaches about 16% on the sharp flared cone, which is almost half of what is observed
by Marineau on the 7-degree cone. An estimate of the initial amplitude of the perturbation at the neutral
point on the flared cone at this condition yields about 2.1× 10−5p∞.

Table 1. Table of measured RMS amplitudes of the second-mode frequency peak on a sharp flared cone.

Axial Normalized RMS Normalized RMS

Position Pressure p′/ps Pressure p′/p∞

x, mm 150–350 kHz 150–350 kHz

230.5 2.05 0.176

280.9 7.31 0.704

332.3 13.4 1.45

355.4 16.3 1.87

381.6 16.2 1.97

408.6 12.4 1.60

433.5 8.21 1.13

450.5 7.57 1.08

While the STFT can provide higher-resolution information on the frequency content, the time resolution
of the spectrogram is fairly poor. Wavelet transforms can provide higher-resolution information in the time
domain, but provide fairly poor-resolution information about the frequency content. The Morlet wavelet
transform is applied over the same laser shot as in Figs. 4 and 5 and the magnitude of the transform is
mapped in Fig. 8. The axes here remain the same as in the STFT spectrograms, but the color contours
now correspond with the magnitude of the wavelet transform coefficient. The wave packets are more clearly
distinguished from the natural waves in the wavelet transforms in Fig. 8 than in the STFT in Fig. 5. In fact,
the features of the double burst seen in Figures 4(c)–4(e) appear more clearly in Figs. 8(c)–8(e), respectively.
Similar double burst features have been observed in computations of nonlinear wave packets in Refs. 23 and
24. The naturally-occurring second-mode disturbances are also visible in the wavelet transform as smaller-
amplitude bursts that occur before and after the wave packet. These naturally-occurring disturbances are
amplitude-modulated in time. These distinct features of amplitude modulation were not observed previously
in the STFTs for the naturally-occurring disturbances. Thus, if the natural disturbances are large, the
amplitude modulation seen in the natural disturbances can be mistaken as wave packets, when using a
simple thresholding method with wavelet analysis to pick out wave packets.

VI. Wave Packet Development on the Blunt Flared Cone

Similar analysis can be applied to measurements on the blunt flared cone. Figure 9 shows the mea-
surements from the surface-mounted pressure transducers for one laser shot. Each plot in Fig. 9 shows the
unfiltered trace along with traces that have been band-pass filtered at the indicated frequencies. Again,
the filtered time traces are offset from the unfiltered time trace by an arbitrary amount. There is a slight
increase in the signal of the second-mode frequency band. The increase in signal appears in Figs. 9(a)–9(d)
at the same time: tp ≈ 0.85 ms. The arrival time of the slight signal increase does not appear to change
with the sensor distance from the nosetip. Thus, it does not appear to convect like the wave packet. The
cause of this signal increase is not clear, but is repeatable for every laser shot ahead of the blunt flared cone
for every tested Reynolds number. The wave packet does not appear to be detectable until x = 351.1 mm.
Then, the wave packet grows and develops harmonics at x = 378.1 mm. These harmonics also grow as the
distance between the nosetip and sensor increases. At these test conditions, the wave packet does not appear
to break down.

The STFTs of the data from the sensors on the blunt flared cone are plotted as spectrograms in Fig. 10.
These STFTs contain similar information to the filtered time traces shown in Fig. 9. Again, there appears
to be a slight increase in pressure fluctuations at the second-mode and harmonic frequencies starting at the
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(a) x = 230.5 mm. (b) x = 280.9 mm.

(c) x = 323.3 mm. (d) x = 355.4 mm.

(e) x = 381.6 mm. (f) x = 408.6 mm.

(g) x = 433.5 mm. (h) x = 450.5 mm.

Figure 8. Morlet wavelet transforms showing the axial development of a laser-generated wave packet in
the boundary layer of a sharp flared cone: rn = 0.16 mm, p0 = 534.3 kPa, T0 = 428.3 K, ρ∞ = 0.022 kg/m3,
Re/m = 5.81× 106/m.
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(d) x = 324.9 mm.
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(e) x = 351.1 mm.
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(f) x = 378.1 mm.
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(g) x = 403.0 mm.

0.4 0.6 0.8 1 1.2
−1

0

1

2

All Frequencies

11 − 130 kHz

130 − 300 kHz

300 − 580 kHz

Time after Laser Pulse tp, ms

p
′
/
p
s
+

o
ff
se
t

(h) x = 420.0 mm.

Figure 9. Filtered time traces showing the axial development of a laser-generated wave packet in the boundary
layer of a blunt flared cone: rn = 1 mm, p0 = 769.1 kPa, T0 = 433.7 K, ρ∞ = 0.032 kg/m3, Re/m = 8.22× 106/m.
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same time (tp = 0.85 ms) at several locations. The increase in amplitude is not present prior to each laser
shot, as shown in Fig. 11.

The arrival of the wave packet is not detectable until it reaches x = 351.1 mm, when the power in the
second-mode frequency band is 1.5 orders of magnitude greater than the unknown signal increase. When the
wave packet is detected at x = 351.1 mm (Fig. 10(e)), it arrives almost 0.25 ms prior to the unknown signal
increase. At this sensor station, the increase in the harmonic frequency band does not appear to start until
around 0.8 ms, so it may not be related to the presence of the wave packet. Between x = 378.1 mm and
x = 420.0 mm, the second-mode frequency band and the harmonic frequency band both show an increase
in power at the same time, indicating that the wave packet is probably nonlinear at these stations. Spectral
broadening does not appear to occur at this condition for the blunt flared cone.

A comparison of the power spectra using windows centered both on (red line) and off (blue line) of the
wave packet is shown in Fig. 12. The power spectra are fairly similar when comparing FFT windows taken
prior to a laser shot and centered over a time period when the wave packet is expected to arrive, between
x = 200.0 mm and x = 301.8 mm (Figs. 12(a)–12(c)). This shows a slightly different picture compared to
the STFTs. A majority of the 1000-point windows do not include much of the unknown signal increase at
tp = 0.85 ms for these first few sensor stations. Thus, the contribution of the unknown signal increase to
the spectrum estimate is small. Note that there is also a low-frequency peak at x = 200.0 mm centered at
about 91 kHz. This peak is similar to the low-frequency peak seen at the first sensor station on the sharp
cone in that it does not appear at the other sensor stations. This peak is present in both spectra shown in
Fig. 12(a), so it is probably unrelated to the passage of the wave packet. The presence of a freestream laser
perturbation does not appear to have a measurable effect at these most upstream sensor stations.

The power spectra at x = 324.9 mm show that there is a slight increase in power in the second-mode
frequencies and a possible first harmonic when the FFT window is centered about the wave packet. When the
FFT window is centered around a time period before a laser pulse is fired, there does not appear to be a first
harmonic of the second mode in the power spectrum. At farther downstream stations (Figs. 12(d)–12(h)),
the second mode and its first harmonic grow when the FFT window is centered about the wave packet.
Again, when the FFT window is centered about a time period before the laser pulse is fired, there does
not appear to be a first harmonic of the second mode in the power spectra. These spectra show that the
freestream laser perturbation increases the second-mode amplitude temporarily and causes the disturbances
to grow larger than if only the natural disturbances were present. Unlike on the sharp cone, the wave packet
on the blunt flared cone does not appear to experience spectral broadening. Thus, the measurements suggest
that the wave packet on the blunt flared cone does not break down by the time it arrives at the last sensor
station.

The normalized RMS amplitudes of the measurements are compared to the computations in Fig. 13. As
on the sharp flared cone, it appears that when the freestream perturbation is present, linear growth of the
perturbation is clear and follows the computations fairly closely. However, when the perturbation is not
present, the RMS amplitudes are relatively similar at each of the sensor stations, with some scatter. It is
possible that without the presence of the laser perturbation, the freestream disturbances create boundary-
layer instabilities that are very small, resulting in low signal-to-noise ratios. Consequently, the relative
differences between these smaller instabilities may not be as apparent as when the amplitudes are larger.

The computed RMS amplitudes of the second mode across the entire second mode frequency peak is
given in Table 2. No spectral broadening was observed on the blunt flared cone, so the RMS amplitude of
the wave packet at transition is unknown. The maximum amplitude of the wave packet again reaches about
16% on the blunt flared cone. However, the location of the maximum amplitude of the wave packet is at
the end of the measurement range, so it is unknown if the wave packet continues growing. The estimated
initial amplitude of the second mode at the neutral point of the blunt flared cone is estimated to be about
8.0×10−7p∞ at this condition. This initial amplitude is almost two orders of magnitude less than on the sharp
cone, despite that the freestream unit Reynolds number analyzed here is 40% higher than the freestream
unit Reynolds number on the sharp cone. Reference16 showed that as the freestream unit Reynolds number
increases, the amplitude of the freestream laser perturbation should also increase. Thus, the blunt flared
cone should be subjected to a larger-amplitude freestream disturbance than the sharp flared cone in these
analyses. However, the estimate of the initial disturbance on the blunt flared cone is still much smaller than
on the sharp flared cone, indicating the receptivity of the blunt flared cone to the laser perturbation is much
smaller than the receptivity of the sharp flared cone.

The Morlet wavelet transforms for measurements on the sharp flared cone revealed the wave packets at
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(c) x = 301.8 mm.

Time after Laser Pulse tp, ms
F
re
q
u
en

cy
f
,
k
H
z

 

 

0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

lo
g 1

0(
(p

′
/
p
s
)2
/
H
z)

−10

−9

−8

−7

−6

−5

−4

−3

(d) x = 324.9 mm.

Time after Laser Pulse tp, ms

F
re
q
u
en

cy
f
,
k
H
z

 

 

0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

lo
g 1

0(
(p

′
/
p
s
)2
/
H
z)

−10

−9

−8

−7

−6

−5

−4

−3

(e) x = 351.1 mm.
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(h) x = 420.0 mm.

Figure 10. Short-time Fourier transforms showing the axial development of a laser-generated wave packet
in the boundary layer of a blunt flared cone: rn = 1 mm, p0 = 769.1 kPa, T0 = 433.7 K, ρ∞ = 0.032 kg/m3,
Re/m = 8.22× 106/m.
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(h) x = 420.0 mm.

Figure 11. Short-time Fourier transforms of measurements from before the laser shot: rn = 1 mm, p0 =
769.1 kPa, T0 = 433.7 K, ρ∞ = 0.032 kg/m3, Re/m = 8.22× 106/m.
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Figure 12. Power spectra showing the axial development of a laser-generated wave packet in the boundary
layer of a blunt flared cone: rn = 1 mm, p0 = 769.1 kPa, T0 = 433.7 K, ρ∞ = 0.032 kg/m3, Re/m = 8.22× 106/m.
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Figure 13. Comparison of normalized measured RMS at each sensor station on the blunt flared cone to the
computed N factor: rn = 1 mm, p0 = 769.1 kPa, T0 = 433.7 K, ρ∞ = 0.032 kg/m3, Re/m = 8.22× 106/m.

Table 2. Table of measured RMS amplitudes of the second-mode frequency peak on a blunt flared cone.

Axial Normalized RMS Normalized RMS

Position Pressure p′/ps Pressure p′/p∞

x, mm 150–350 kHz 150–350 kHz

200.0 0.343 0.0403

250.4 0.294 0.0389

301.8 0.409 0.0609

324.9 1.29 0.203

351.1 2.52 0.421

378.1 8.70 1.55

403.0 15.0 2.83

420.0 16.2 3.18
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each sensor station more clearly than the STFTs. These wavelet transforms are applied to the measurements
on the blunt flared cone and shown in Fig. 14. The wavelet transform of the measurements at x = 200 mm
shows that there is an increase in the wavelet transform magnitude at lower frequencies around 100 kHz. The
lower frequency disturbance is not present for the next three sensor stations, but is present at x = 351.1 mm
and x = 420.0 mm. A comparison of the power spectra in Fig. 12 indicates that this low-frequency peak is
also present prior to the firing of a laser pulse, so it is likely unrelated to the presence of the wave packet.
The increased amplitude at tp ≈ 0.85 ms is still seen in the wavelet transforms, but it is easier to distinguish
between the presence of a wave packet in the aft sensors and the increase in noise. The double- and triple-
burst wave packet structures are also evident in the wavelet transforms of the measurements at the most aft
sensor stations.

VII. Summary and Conclusions

A freestream laser perturbation was used to generate a wave packet in the boundary layer on a flared cone.
An analysis of the power spectra as it changes over time shows that the wave packet temporarily increases
the amplitude of the boundary-layer instabilities. A peak is seen in the power spectra at a frequency that
is within the range of a first-mode instability. However, the power in this peak is fairly similar before and
after the arrival of the wave packet, and thus is unlikely to be related to the presence of the wave packet.
Furthermore, this peak is only present at the first sensor station, and does not appear to grow with an
increase in axial sensor station. The power in the second mode and its harmonics increases during the
passage of the wave packet. On both the sharp and blunt flared cone, the presence of higher harmonics does
not appear in the power spectra unless the wave packet is present. At the most aft measurement stations on
the sharp flared cone, a broadband increase in the frequency content occurs during the passage of the wave
packet, indicating breakdown of the wave packet. After the passage of the wave packet, the spectra show only
the presence of a second-mode peak. This indicates that the effect of the large freestream laser perturbation
temporarily causes breakdown to occur on the cone when the natural disturbances would otherwise not.

Some further investigation is required to determine the causes of some of the phenomena observed in the
time-frequency analyses. First, at the farthest upstream measurement station, the wave packet contains a
low-frequency peak, which does not appear to be related to the wave packet. However, computations by
Huang et al.7 indicate that low-frequency waves arrive prior to the wave packet generated by a very small
discrete thermal disturbance. While there is a slight increase in the lower-frequency peak when the wave
packet in the current experiment passes by a sensor, the time-frequency analysis do not clearly indicate that
this is the case. Second, on the blunt flared cone, an increase in power occurs at the second-mode frequency
and its first harmonic. This increase in power does not appear to be convective because it appears on several
sensors at the same time. Furthermore, this increase in power eventually abates because it does not appear
just before the next laser pulse is fired. The cause of this increase is unknown. The unanswered questions
and potential for future refinement of this experiment provide many opportunities for research.
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