GUIDELINES AND SUGGESTIONS FOR BALLOON GONDOLA DESIGN

MAY 9-11 2016
HUGO FRANCO
DESIGN REQUIREMENTS

● STRUCTURAL INTEGRITY
 ➢ Primarily to survive termination event
 – Safety
 – Mission assurance
 ➢ Has been sufficient for landing – Although not a CSBF requirement

● LAUNCHABILITY
 ➢ Important to prevent damage
 ➢ Allows for less than ideal launch conditions

● STAGING/PICKUP
 ➢ Must be able to fit inside existing high bays
 ➢ Allows for hoist pickup and roll out to launch vehicle

● RECOVERY
 ➢ Some existing recovery limitations – particularly Antarctica
 ➢ Crucial to stay within limitations for critical components
STRUCTURAL REQUIREMENTS

● 10G VERTICAL – 5G SIDE LOAD
 ➢ Based on ultimate load of the material (not yield)
 ➢ Intended to prevent freefall of components

● ROTATOR
 ➢ Critical Component
 – Single point failure
 – Watch for concentration factors

● SUSPENSION LINES (WHERE APPLICABLE)
 ➢ Great historical data for steel cables
 ➢ Have used synthetic systems before to save weight – Kevlar, Spectra
 – UV a concern, one time use perhaps

● STRUCTURAL MEMBERS
 ➢ Mostly made of Aluminum or other lite tough metals
 ➢ Have flown Carbon Fiber/metal hybrids
 – Still learning to test and approve for certification
LAUNCHABILITY

- **Payload Must Be Able to Survive Launch**
 - These are dynamic launches
 - Damage to antennae, solar panels or other protruding objects
 - Sensitive equipment can be damaged
 - Latching mechanisms

- **Minimum Desired Distances from Launch Vehicle**
 - “20 degree rule” – Assures minimum desired clearance Launch Vehicle
 - 6 ft. of ground clearance – Avoids contact with ground
 - 5 ft. of clearance from front end of vehicle – Avoids contact with front end of vehicle during launch

- **Other Observations**
 - Width/Length of payload – High MOI
 - Wide sections near the boom (higher)
 - Risk of contact with boom and damage
STAGING/GONDOLA PICKUP

- **FACILITIES LIMITATIONS**
 - Height/Width of payload
 - Allow for weighing the payload inside the building (Antarctica)
 - Allow for ease of roll in/and out of building

- **CART/WHEELS**
 - Allows people to work underneath
 - Ideally allows for ballast hoppers and solar panels to stay attached for roll out.
 - Huge time saver
 - Must be big enough for easy rollout
 - Must allow rotation of payload for vehicle pickup
RECOVERY

- **GONDOLA DISASSEMBLY**
 - Critical components to stay within a certain allowable size and weight
 - Limited by recovery vehicle
 - Helo
 - Twin Otter and Bassler (Antarctica)
 - Land Vehicles

 - Easy/Quick Disassembly
 - Allows for quicker recovery - Antarctica
 - Data vaults and other critical components accessible
 - Trade off between access and protection
COMMON PITFALLS AND RECOMMENDATIONS

- WAITING TOO LONG TO CONTACT CSBF
 - The sooner the better on gondola design
 - Pointing systems are critical and expensive components
 - The sooner we see the design the better
 - Placing CSBF equipment in appropriate location
 - Thermal considerations
 - Antenna placement

- PROVIDING ANALYSIS FOR MAXIMUM WEIGHT
 - Final weights are usually higher than predicted
 - Avoids rerunning the analysis if overweight

- PROTECTIVE CAGE FOR SIP

- NO APPROPRIATE CASTERS/ TIRES
 - Hard to maneuver