GUIDELINES AND SUGGESTIONS FOR BALLOON GONDOLA DESIGN

MAY 9-11 2016
HUGO FRANCO
DESIGN REQUIREMENTS

- **STRUCTURAL INTEGRITY**
 - Primarily to survive termination event
 - Safety
 - Mission assurance
 - Has been sufficient for landing – Although not a CSBF requirement

- **LAUNCHABILITY**
 - Important to prevent damage
 - Allows for less than ideal launch conditions

- **STAGING/PICKUP**
 - Must be able to fit inside existing high bays
 - Allows for hoist pickup and roll out to launch vehicle

- **RECOVERY**
 - Some existing recovery limitations – particularly Antarctica
 - Crucial to stay within limitations for critical components

CSBF Ops Status - April 2016
STRUCTURAL REQUIREMENTS

- **10G VERTICAL – 5G SIDE LOAD**
 - Based on ultimate load of the material (not yield)
 - Intended to prevent freefall of components

- **ROTATOR**
 - Critical Component
 - Single point failure
 - Watch for concentration factors

- **SUSPENSION LINES (WHERE APPLICABLE)**
 - Great historical data for steel cables
 - Have used synthetic systems before to save weight – Kevlar, Spectra
 - UV a concern, one time use perhaps

- **STRUCTURAL MEMBERS**
 - Mostly made of Aluminum or other lite tough metals
 - Have flown Carbon Fiber/metal hybrids
 - Still learning to test and approve for certification
Launchability

- **Payload Must Be Able to Survive Launch**
 - These are dynamic launches
 - Damage to antennae, solar panels or other protruding objects
 - Sensitive equipment can be damaged
 - Latching mechanisms

- **Minimum Desired Distances from Launch Vehicle**
 - “20 degree rule” – Assures minimum desired clearance Launch Vehicle
 - 6 ft. of ground clearance – Avoids contact with ground
 - 5 ft. of clearance from front end of vehicle – Avoids contact with front end of vehicle during launch

- **Other Observations**
 - Width/Length of payload – High MOI
 - Wide sections near the boom (higher)
 - Risk of contact with boom and damage
STAGING/GONDOLA PICKUP

● FACILITIES LIMITATIONS
 - Height/Width of payload
 - Allow for weighing the payload inside the building (Antarctica)
 - Allow for ease of roll in/and out of building

● CART/WHEELS
 - Allows people to work underneath
 - Ideally allows for ballast hoppers and solar panels to stay attached for roll out.
 - Huge time saver
 - Must be big enough for easy rollout
 - Must allow rotation of payload for vehicle pickup
RECOVERY

- **GONDOLA DISASSEMBLY**
 - Critical components to stay within a certain allowable size and weight
 - Limited by recovery vehicle
 - Helo
 - Twin Otter and Bassler (Antarctica)
 - Land Vehicles
 - Easy/Quick Disassembly
 - Allows for quicker recovery - Antarctica
 - Data vaults and other critical components accessible
 - Trade off between access and protection
COMMON PITFALLS AND RECOMMENDATIONS

- **Waiting Too Long to Contact CSBF**
 - The sooner the better on gondola design
 - Pointing systems are critical and expensive components
 - The sooner we see the design the better
 - Placing CSBF equipment in appropriate location
 - Thermal considerations
 - Antenna placement

- **Providing Analysis for Maximum Weight**
 - Final weights are usually higher than predicted
 - Avoids rerunning the analysis if overweight

- **Protective Cage for SIP**

- **No Appropriate Casters/Tires**
 - Hard to maneuver