2016 Scientific Ballooning Technologies Workshop

Telemetry Options for LDB Payloads

Columbia Scientific Balloon Facility – Bryan Stilwell and Chris Field

May 11, 2016
CURRENT LOS TELEMETRY OPTIONS

- 1 Mhz bandwidth digital transmitter
 - 330 Kbit biphase encoded data
 - 740 Kbit randomized NRZ-L encoded data
 - ≈ 0.5 A @ 28V

- 3 Mhz bandwidth digital transmitter
 - 1 Mbit biphase encoded data
 - 2.24 Mbit randomized NRZ-L encoded data
 - ≈ 1.1 A @ 28V

- 6 Mhz bandwidth digital transmitter
 - 2 Mbit biphase encoded data
 - 4 Mbit randomized NRZ-L encoded data
 - ≈ 1.1 A @ 28V

- Analog video transmitter
 - NTSC
 - ≈ 2A @ 28V
CURRENT TDRSS TELEMETRY OPTIONS

- Powered by CSBF
- Omni Antenna
 - 6-10 Kbps data
 - 115,200 baud RS232 interface
 - CSBF downlinks data in 2041 byte packets
- High Gain Antenna
 - 93 Kbps data
 - 115,200 baud RS232 interface
 - No packetizing
CURRENT IRIODIUM TELEMETRY OPTIONS

- **Iridium SBD**
 - Email based
 - Continuously available
 - Uplink commands
 - Commands are checked every 1/minute
 - Downlink 255 byte science packet
 - One packet every 1 to 15 minutes (selectable)

- **Iridium Dialup**
 - Usage must be requested
 - Uplink commands
 - Commands received instantly
 - Downlink 255 byte science packet
 - Downlink data through “high rate” port
 - The connection is only 2400 baud

- **Iridium Pilot**
 - IP based system
 - Up to 134 Kbps throughput
 - Typical throughput is ≈ 75Kbps (service is bursty)
 - Connect to system from anywhere in the world
Low Cost TDRSS Transceiver (LCT2)

- Designed and built at WFF
- 300 to 500 Kbps through HGA
- Flown at 150 Kbps
 - Flt 667NT – FY15 Ft. Sumner
- Test flight planned for FY16 Ft. Sumner at higher rate
- Science availability possibly in 2017
 - Science interface TBD
Iridium Certus

- IP based system similar to Pilot
- Up to 1.4 Mbps downlink
- Up to 512 Kbps uplink
- Availability likely sometime in 2017
- Cost TBD
 - Hopefully similar to Pilot
- Truly global system
Future Telemetry Options

Inmarsat BGAN
- IP based system
- Up to 448Kbps throughput
- Very expensive
 - $≈ 2.54 / MB
 - $≈ 740,000 for a 100 day flight at 300 Kbps rate
- Connect to system from anywhere in the world
- NOT AVAILABLE AT THE POLES
LOWER ANTENNA REQUIREMENTS

- LOS antenna hang below the gondola
- Standard SIP configuration
 - 2 - UHF antennas
 - 1” wide X 27” long
 - Typically on opposite sides of the gondola
 - 2 - L-Band antennas
 - 5” diameter X 3” long
 - Typically on opposite sides of the gondola
- Standard Science configuration
 - 1 - L-Band antenna
- FAA transponder antenna
 - 5” diameter X 3” long
 - NOT USED IN ANTARCTICA
Upper Antenna Requirements

- Upper antennas need an unobstructed view of the sky; they should be the highest objects on the gondola.

- Standard SIP configuration
 - 3 GPS antennas
 - 4” diameter X 1” tall
 - 3 Iridium antennas
 - 3” diameter X 7” tall
 - 2 feet separation between radiating antennas
 - TDRSS Omni
 - 7” diameter X 12” tall (mid-latitude)
 - 7” diameter X 27” tall (Antarctic)
 - 2 feet separation between radiating antennas

- TDRSS HGA
 - 24” diameter X 16” tall
 - 25 lbs
 - Requires two additional GPS antennas with as large separation as possible

- Iridium Pilot
 - 23” diameter X 8” tall
 - 28 lbs