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Several multi-model ensemble methods are investigated for predicting wake vortex 

transport and decay.  This study is a joint effort between National Aeronautics and Space 

Administration and Deutsches Zentrum für Luft- und Raumfahrt to develop a multi-model 

ensemble capability using their wake models. An overview of different multi-model ensemble 

methods and their feasibility for wake applications is presented.  The methods include 

Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations.  

The methodologies are evaluated using data from wake vortex field experiments. 

Nomenclature 

A
~

  = REA average 

Bi  = bias of model i 

b  = vortex spacing 

b0  = initial vortex pair separation 

Di  = absolute distance to ensemble mean of model i 

f
~

  = ensemble forecast uncertainty 

e  = ensemble 
   = dimensional eddy dissipation rate 

if   = forecast of ith model 

f
~

  = forecast average 

f   = upper ensemble uncertainty limit 

f   = lower ensemble uncertainty limit 

g  = gravitational acceleration 

   = vortex circulation 

0   = initial vortex circulation 

*   = vortex circulation strength normalized by initial vortex strength, 0 

m  = weighting factor for RB,i 

nv  = natural variability 

n  = weighting factor for RD,i 
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N  = dimensional Brunt-Väisälä frequency 

p  = parameter 

  = potential temperature 

RD,i  = weighting factor for model i (considering model convergence) 

RB,i  = weighting factor for model i (considering model bias) 

Ri  = total weighting factor for model i 
   = standard deviation 

obs   = variability calculated from measurements 

err   = lidar measurement error 

nv   = natural variability of vortices 

t  = vortex age 

t0  = normalized vortex age 

T  = non-dimensional time 

u  = crosswind 

V0  = initial vortex descent velocity 

w  = vortex descent speed 

y  = lateral position of the vortex core 

y*  = vortex lateral transport normalized by b0 

z  = vertical position of the vortex core 

z*  = vortex height normalized by b0 

AGL  = Above Ground Level 

ANOVA  = Analysis of Variance 

APA  = AVOSS Prediction Algorithm 

ASOS  = Automated Surface Observations System 

ATM  = Air Traffic Management 

AVOSS  = Aircraft VOrtex Spacing System 

D2P  = Deterministic 2-Phase Model 

DEN03  = Denver 2003 Wake Vortex Field Experiment (NASA) 

DFW97  = Dallas/Fort Worth 1997 Wake Vortex Field Experiment (NASA) 

DLR  = Deutsches Zentrum für Luft- und Raumfahrt 

IGE  = In-Ground Effect 

LES  = Large Eddy Simulation 

Lidar  = LIght Detection And Ranging 

MEM95  = Memphis 1995 Wake Vortex Field Experiment (NASA) 

MCS  = Monte-Carlo Simulation 

MME  = Multi-Model Ensemble 

NASA  = National Aeronautics and Space Administration 

NGE  = Near-Ground Effect 

OGE  = Out-of-Ground Effect 

pdd  =  probability density distribution 

P2P  = Probabilistic 2-Phase Model 

PL  = Pulsed Lidar 

PPE  = Perturbed Physics Ensemble 

RASS  = Radio Acoustic Sounding System 

REA  = Reliability Ensemble Averaging 

BMA  = Bayesian Model Averaging 

rmse  = root mean square error 

SME  = Single Model Ensemble 

TASS  = Terminal Area Simulation System 

TDAWP  = TASS Driven Algorithms for Wake Prediction 

TDP  = Abbreviation used for the TDAWP model 

WakeMUC = Munich Wake Vortex Field Experiment (DLR) 

WakeFRA  = Frankfurt Wake Vortex Field Experiment (DLR) 

WakeOP  = Oberpfaffenhofen Wake Vortex Field Experiment (DLR) 
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I. Introduction 

TEADILY increasing air traffic is a challenge for air traffic controllers, airports, air carriers, and pilots. Safe 

operations may be threatened by wake vortices which can be encountered en-route, during departures and arrivals, 

and particularly in ground proximity, limiting the capacity of runways and posing a potential risk for aircraft. 

Atmospheric parameters such as wind conditions, thermal stratification, shear layers, and turbulence strongly affect 

wake vortex behavior. Dangerous situations can occur when wake vortices hover in the glide path corridor, drift to 

parallel runways, or live longer than expected. In order to predict and avoid these situations, wake vortex prediction 

models have been developed. 

However, forecasts are associated with initial condition and model uncertainties, which results in the need for 

probabilistic forecasts. Multi-Model Ensemble (MME) approaches can cover model uncertainty and can be extended 

to also consider initial condition uncertainty. Several studies, many of them in the field of meteorology, have shown 

that combining the forecasts of structurally different models can improve both the deterministic and probabilistic 

forecast skill on average (Raftery et al. 2005). The success of the ensemble approach is based on the fact that any 

member model may be the best in certain situations (Hagedorn et al. 2005), so that together the models cover the full 

possible solution space. Certainly, employing the best member instead is tempting. However, the best member varies 

in different conditions and is therefore difficult to identify (Hagedorn et al. 2005). 

In this paper we investigate whether ensemble methods can be used to increase the prediction skill of individual 

wake models by combining several predictions of wake decay and transport in an effective manner. We evaluate 

various distinct MME approaches, consisting of Reliability Ensemble Averaging, Bayesian Model Averaging, and 

Monte Carlo Simulation, which utilize the ensemble spread to predict probabilistic envelopes. Their prediction skills 

are evaluated using a test dataset and compared with the individual models’ prediction skill. The models that are used 

were exchanged under an inter-agency NASA-DLR cooperation agreement. Wake measurement data from lidar (light 

detection and ranging) at Memphis (MEM95) (Campbell et al. 1997), Dallas (DFW97) (Proctor 98), Denver (DEN03) 

(Proctor 98), Frankfurt (WakeFRA) (Frech and Holzäpfel 2008), Munich (WakeMUC) (Holzäpfel et al. 2014) and at 

Oberpfaffenhofen (WakeOP) (Holzäpfel et al. 2014) are used for training and evaluation. The Memphis dataset 

contains wake history in all three phases of vortex descent (out-of-ground effect, near-ground effect, and in-ground 

effect) while the DLR data comprises vortices developing in ground effect. In addition to these data sets Dallas 

(DFW97) and Denver 2003 (DEN03) datasets were also used in model evaluation. All data are treated non-

dimensionally: Γ is normalized by 0, and transport and vertical descent by b0. 

II. Fast-Time Wake Transport and Decay Models 

Fast-time wake models are empirical or semi-empirical algorithms used for real-time predictions of wake transport 

and decay based on aircraft parameters and ambient weather conditions.  The aircraft dependent parameters include 

the initial circulation (0), the initial vortex descent velocity (V0), and the vortex pair separation distance (b0).  The 

atmospheric initial conditions include vertical profiles of either temperature or potential temperature (), EDR (), and 

wind. The atmospheric parameters that affect wake decay are atmospheric stratification and turbulence.  The models 

assume that all vorticity created due to lift is rolled up into a pair of counter-rotating vortices at the time of model 

initialization.  The four models used in this study include: AVOSS (Aircraft Vortex Spacing System) Prediction 

Algorithm (APA), TASS (Terminal Area Simulation System) Derived Algorithms for Wake Prediction (TDP), 

Deterministic 2-Phased (D2P), and the Probabilistic 2-Phased (P2P).  The APA and TDP models have been developed 

by the National Aeronautics and Space Administration (NASA), while the D2P and P2P models have been developed 

by the Deutsches Zentrum für Luft- und Raumfahrt (DLR).  A brief overview of the four fast-time wake models is 

given in this section. 

A. Deterministic 2-Phase (D2P) and Probabilistic 2-Phase (P2P) Wake Vortex Models 

D2P and P2P wake vortex decay and transport models were developed at DLR (Holzäpfel 2003). Vortex decay in 

D2P is based on an analytical solution of the Navier-Stokes equations for the decaying potential vortex which has 

been extended to model the turbulent decay of a pair of counter-rotating vortices. The decay is divided into a diffusion 

and a rapid decay phase and has been adapted to the decay characteristics predicted by large eddy simulations. 

Moreover, it uses 5-15 m average circulation values in the vortex decay calculations. Vortex descent speed depends 

on a nonlinear relation to the circulation considering effects of stable thermal stratification. When the vortices 

approach the ground they start to slow down their descent and diverge laterally. This effect is modeled by introducing 

image vortices for the impenetrable ground boundary condition. With superposition of the induced velocity fields 

according to the law of Biot-Savart, the vortex divergence is reproduced. Secondary and tertiary vorticity that detaches 
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during this ground interaction is modeled using point vortices that rotate around the primary vortices together with 

their respective image vortices. 

Crosswind promotes the detachment of secondary vorticity for the lee vortex and suppresses it for the luff vortex. 

The strength of the secondary vortices is adapted according to crosswind speed (Holzäpfel and Steen 2007). 

Measurements from WakeMUC showed that the lee vortex decays in average slightly faster than the luff vortex 

(Holzäpfel et al. 2014). This effect however is disregarded in the model physics. P2P is the probabilistic version of 

D2P with uncertainty allowances for the predicted parameters. Probability density functions (PDFs) derived from 

measurements relative to the forecasts are used to derive the level of probability for these limits. By shifting the 

uncertainty limits, theoretically any desired probability level can be attained. In this study we only employ the 

deterministic version D2P. 

B. AVOSS (Aircraft Vortex Spacing System) Prediction Algorithm (APA) 

In the late 1990s, under NASA’s Aircraft Vortex Spacing System (AVOSS) project, significant advances were 

made in wake vortex modeling based on the data from field experiments and large eddy simulations.  The initial 

versions of the AVOSS Wake Vortex Prediction Algorithm (APA) were developed during the AVOSS program and 

demonstrated in the AVOSS demo at the Dallas/Ft. Worth (Hinton 2001).  The APA model computes the out-of-

ground-effect (OGE) decay and descent based on Sarpkaya (Sarpkaya 2000; Sarpkaya et al. 2001).  The model has an 

algorithm for enhanced rate of decay during the ground effect developed by Proctor et al. (2000).  The scheme to 

compute lateral vortex transport is based on the vertical profile of crosswind (Robins and Delisi 2002), and the in-

ground-effect (IGE) transport accounts for vortex spreading and rebound (Robins et al. 2002).  The code development 

of APA is described in Robins and Delisi (2002). 

C. TASS (Terminal Area Simulation System) Driven Algorithms for Wake Prediction (TDP) 

The TDP model (Proctor et al. 2006; Proctor and Hamilton 2009) has been developed from parametric studies 

using large eddy simulation of wake vortices (Han et al. 2000). The TDP model uses separate prognostic equations 

based on the Terminal Area Simulation System (Proctor 1987) for vortex descent rate and circulation. The effect of 

crosswind shear on vortex descent rate is also taken into consideration, which allows the modeling of vortex tilt and 

change in lateral separation due to crosswind (Proctor 2009; Proctor and Hamilton, 2009). The IGE model in TDP is 

same as the one used in APA. 

D. Comparison of Models 

In order to show that the models fulfill the ensemble criterion of being structurally independent, a detailed model 

evaluation was conducted using data from four different field experiments (Appendix A).  Model bias data based on 

an evaluation of all datasets were used to generate the overall statistics. Circulation data were normalized by 0 and 

the lateral transport and vertical descent data were normalized by b0. Distributions of data are shown in Figures 1-3 as 

a combined box-and-whisker plot with a mean-standard deviation overlay. The mean and standard deviation are shown 

by a green rectangle extended plus and minus one standard deviation from the central green line representing the mean 

of the distribution. The box portion shows the median (red vertical line) and the interquartile distance in both 

directions. The interquartile distances represent the 25-50 percentile and 50-75 percentile of the data, and are not 

necessarily equal in size. The notch in the box is an estimate of the significant differences. If the median of one 

distribution falls outside the notch on another, then the difference between the two distributions is statistically 

significant. On each side of the box the whiskers extend 1.5 times the interquartile distance for that side. Any data 

points falling outside the whiskers are shown individually as a red cross. 

The statistics for the biases in circulation prediction, lateral transport prediction and vortex descent predictions are 

given in Tables 1-3.  APA v3.2 had the smallest mean and D2P had the smallest standard deviation in the mean 

circulation bias.  For lateral transport, D2P had the smallest mean and standard deviation in the bias.  TDP v2.1 had 

the smallest mean and APA v3.2 had the smallest standard deviation in the vortex descent prediction bias. 

For all four fast-time wake models, ANOVA tests were performed to identify any statistically significant 

differences in the model prediction bias.  The results of ANOVA analysis are shown in Figures 1-3. Statistically 

significant differences were found in the bias (circulation, vortex descent) as a function of different models which are 

identified in the figures.  APA v3.2 and v3.4 had statistically significant differences in vortex descent bias compared 

with D2P and TDP v2.1.  Both D2P and TDP models are based on data derived from large eddy simulation, whereas 

the APA models are based primarily on observations. No statistically significant differences were identified in lateral 

transport predictions. 
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Table 1:  Bias in Circulation Prediction (2734 points) 

Option mean σ median 2.5 percentile 97.5 percentile 

APA32 0.007 0.226 0.042 -0.421 0.324 

APA34 0.071 0.222 0.113 -0.375 0.366 

TDP21 0.147 0.224 0.184 -0.300 0.428 

D2P 0.111 0.217 0.148 -0.327 0.396 

 

 

 APA32 APA34 TDP21 D2P 

APA32  X X X 

APA34 X  X X 

TDP21 X X  X 

D2P X X X  
 

 

Figure 1. Left panel shows box-and-whisker plot for bias in circulation prediction across all models.  The right panel 

shows the statistically significant differences between models (Bias) based on the results of ANOVA analysis. 

 

 

Table 2:  Bias in Prediction of Lateral Transport (2734 points) 

Option mean σ median 2.5 percentile 97.5 percentile 

APA32 -0.081 0.767 -0.026 -1.824 1.459 

APA34 -0.088 0.758 -0.040 -1.796 1.399 

TDP21 -0.091 0.771 -0.040 -1.822 1.446 

D2P -0.069 0.754 -0.035 -1.775 1.375 

 

 

 

 

Figure 2. Left panel shows box-and-whisker plot for bias in lateral transport prediction across all models.  No 

statistically significant differences were found between models (Biasy) based on the results of ANOVA analysis.  



 

 

American Institute of Aeronautics and Astronautics 

6 

Table 3:  Bias in Prediction of Vortex Descent (2734 points) 

Option mean σ median 2.5 percentile 97.5 percentile 

APA32 0.191 0.500 0.187 -0.888 1.173 

APA34 0.160 0.504 0.166 -0.932 1.137 

TDP21 0.068 0.502 0.096 -1.051 1.028 

D2P 0.074 0.522 0.088 -1.023 1.051 

 

 

 APA32 APA34 TDP21 D2P 

APA32   X X 

APA34   X X 

TDP21 X X   

D2P X X   
 

 

Figure 3. Left panel shows box-and-whisker plot for bias in vortex descent prediction across all models.  The right 

panel shows the statistically significant differences between models (Biasz) based on the results of ANOVA analysis. 

III. Multi-Model Ensemble Methods and Application 

In this section several MME methods with both deterministic and probabilistic output are introduced and their 

applicability is evaluated. If necessary for the method, the ensemble is first trained with a set of 206 landings and then 

scored with a set of 200 independent landings. The whole dataset consists of selected high quality measurements with 

z0<1.7 from the WakeMUC (Holzäpfel et al. 2014) and the WakeFRA (Frech and Holzäpfel 2008) campaigns. From 

this the training set and the test set are generated by randomly adding landings to each of them in order to cover similar 

ambient conditions, orography, and measurement uncertainties in both. The limit of 1.7 b0 marks the boundary between 

Near-Ground-Effect (NGE) and Out-of-Ground-Effect (OGE). Ensemble performance in OGE has not yet been 

evaluated. 

As stated above, a Multi-Model Ensemble needs structurally independent models. The ANOVA analysis, however, 

shows that the differences for the forecast of the vertical vortex position z between APA 3.4 and APA 3.2 are not 

statistically significant in IGE and NGE. As a consequence APA 3.2 is only considered for the y- and Γ-forecast when 

employing the Direct Ensemble Average (DEA), the Reliability Ensemble Average (REA), and the Bayesian Model 

Average (BMA). Moreover, no model exhibits statistically significant differences for the y-prediction, as lateral 

transport depends for the most part on the crosswind at the current vertical vortex position. Additionally, the wind 

exhibits strong variability which cannot be covered by the 10 minute averages used. Thus the models might be rated 

differently in terms of y-forecast for various training datasets, which is not necessarily related to their skill. 

Nevertheless the ensemble approach shall also be applied to the y-forecast, as a skillful probabilistic envelope might 

still deliver reasonable results. As skill metrics we apply the rmse and the bias. Furthermore we introduce the skill 

factor s, which takes the rmse of all parameters p into account (see equation (1)). Negative values of si indicate that 

model i is on average outperformed by the ensemble e.  

 
1

/
1 ,.


 

n

rmsermse
s

n

p pipe

i

 (1) 
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A. Direct Ensemble Average (DEA) 

In this method, the ensemble members are pooled together and their forecasts contribute equally weighted to the 

MME forecast (see equation (1)). However, this approach neglects the differences in quality of the individual ensemble 

members’ performances. Nevertheless, it is used as a baseline with which to compare the outputs of the REA approach. 

 
i

f

f i

i
  (2) 

Table 4 shows that the DEA approach does not improve the forecast of any parameter in comparison to the 

respective best member. The skill factors support this finding. 

 

Table 4: performance of the DEA ensemble and its individual members (median for 200 test cases). Skill sz,y,Γ 

considers all parameters, skill sz,Γ only the z and Γ forecast. 

 rmse Γluff rmse Γlee rmse yluff rmse ylee rmse zluff rmse zlee skill sz,y,Γ  skill sz,Γ 

DEA 0.115 0.104 0.829 0.566 0.199 0.167 0.00 0.00 

TDP 2.1 0.099 0.096 0.901 0.622 0.257 0.176 -0.033 -0.008 

APA 3.4 0.149 0.128 0.949 0.561 0.212 0.185 -0.115 -0.144 

APA 3.2 0.218 0.180 0.989 0.548 (0.201) (0.188) -0.191 -0.254 

D2P 0.103 0.106 0.571 0.583 0.136 0.162 0.168 0.146 

 

B. Reliability Ensemble Averaging (REA) 

Giorgi and Mearns (2002) have developed an ensemble method, which rates the individual forecasts according to 

their bias in a set of training data. Additionally, they assume in their approach that the distance of each forecast to the 

ensemble mean is a measure of its reliability. They found that this approach allows a reduction of the uncertainty range 

as the influence of poorly performing models can be decreased. Instead of applying this to the average change of 

temperature ΔT as in Giorgi and Mearns (2002) we aim for the average f
~

of the individual forecasts fi of each model i:  

 






i

i

i

ii

R

fR

f
~  (3) 

where Ri denotes the general reliability factor for model i and is used to weight its forecast. The general reliability 

factor Ri consists of the two specific factors RB,i and RD,i that are here determined by 
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RB,i (performance criterion) is a factor that describes the model reliability as a function of model bias Bi, and RD,i 

(convergence criterion) characterizes the model reliability in terms of distance between an individual model forecast 

and the ensemble prediction Di. The performance and convergence criterion are determined individually for decay, 

descent, and lateral transport of the luff and lee vortices, respectively. nv denotes a measure of natural variability and 

ensures that models with a deviation less than nv are regarded as reliable, so that RD,i = 1 = Ri. In other words, if the 

bias or the absolute distance is smaller than nv, the corresponding reliability factor is set to 1, preventing Ri from 

exceeding unity. In the original approach Bi is also calculated using the natural variability. However in our application, 

it is only applicable to Di in order to prevent it from becoming too large. Applying it to Bi impairs the ensemble 

forecast. 

The distance DT,i is calculated iteratively for every single forecast with the direct ensemble average as first guess. 

Both the performance criterion and the convergence criterion can be weighted by the exponents n and m. In order to 

estimate the uncertainty of the ensemble forecast, Giorgi and Mearns (2002) introduce f
~

, which quantifies how 
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strong the individual models deviate from the ensemble forecast, considering their respective weights (see equation 

(5)). 

  
 

2/1
2

2/1
2

~

~~~

















 







 




i

i

i

ii

if
R

ffR

ffA  (5) 

Applied against the ensemble mean we obtain an upper and lower uncertainty limit. 

 fff 
~~

  (6) 

Furthermore the collective reliability ~  of the ensemble forecast is given by the weighted average of the 

individual model reliability factors: 

 





i

i

i

i

R

R2

~  (7) 

To summarize: we train the ensemble with the help of the model bias of a training dataset and additionally rate it 

during the operational run by a weight that depends on the individual model distance to the ensemble mean. A model 

is regarded as reliable, when it performs well in the training, if it is close to the ensemble mean and if it is forecasted 

within the natural variability. 

1. Application 

The REA method can only deliver fair results, if the reliability factors of the models are not all equal. In the case 

that the reliability factors all equal 1, because Bi or Di are within the natural variability, the ensemble cannot be better 

than the DEA approach. By using the natural variability as a tuning parameter, we can achieve a uniform distribution 

of possible reliability factors from 0 to 1, without weighting the models equally. Other than for RB,i the natural 

variability cannot be neglected for RD,i. As the ensemble mean may converge towards an individual model prediction, 

the respective RD,i must be prevented from becoming infinite. We obtain good results for nvz*=nvy*=0.06 and 

nvΓ*=0.04, which is on the order of the model bias in the training set. Contrarily, RB,i is calculated in relation to the 

bias of the best model in every single simulation, which promotes skilled models stronger than if relating them to nv. 

To prove that both RB,i and RD,i are independent, they are plotted against each other. Figure 4 indicates that there is no 

correlation. This, and the fact that the presence of RD,i improves the MME skill, justify that the convergence and the 

performance criterion are necessary. For the test dataset the best results are obtained when both factors are equally 

weighted (n=m=1).  

Concerning the ambient weather dependency of RB,i, the best skill was achieved with a total wind dependency for 

Γ and a crosswind dependency for z. This is a step into the direction of a best member approach, where for each 

situation a best model is identified. Regarding the forecast of the lateral position y it is difficult to obtain a rating of 

the y-forecast that is not only valid for the training dataset. This can be related to the crosswind variability that 

determines the quality of the prediction of lateral transport. However, a model which predicts the vertical vortex 

position correctly also has better wind information in the respective altitude. As a consequence the ensemble prediction 

of the lateral vortex position y is best when we assume that RB,i,y = RB,i,z . 

The forecast reliability ρ is calculated for all parameters according to equation (7). If this measure was able to 

predict the ensemble forecast quality, a correlation between rmse and ρ should be visible. However, Figure 5 only 

shows a weak correlation regarding the z-prediction and no correlation for the y- and Γ-forecast. Consequently ρ is 

not applicable to quantify the reliability of wake vortex predictions, at least not in the way it is formulated in equation 

(7).  
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Figure 4. RD against RB for all models and for the test dataset. RB and RD are uncorrelated for all parameters 

indicating that both factors are valuable. 

 

 

 
Figure 5. Correlation between the forecast reliability ρ and the ensemble rmse of the respective forecast.  

A weak correlation can be found for z, but no correlation exists for y and Γ. 

 

The uncertainty limits are first calculated as suggested by Giorgi and Mearns (2002) for luff and lee vortices 

separately. As upper and lower limit we use the conservative limit of either of them. However, this approach does 

only consider model uncertainty and not the uncertainty of the initial conditions. Hence, the initial condition 

uncertainty is taken into account by adding a priori determined standard deviations to the REA uncertainty limits. For 

WakeMUC, the initial conditions are derived from lidar measurements, so the uncertainties are the lidar measurement 

uncertainties σz0 = 9 m, σy0 = 13 m, and σΓ0 = 13 m2/s (Köpp et al. 2005). If not derived from lidar, the uncertainty for 

0 is calculated using the error propagation method considering uncertainties of aircraft mass, air density, and flight 

speed (σz=3 m and σy=7 m (Holzäpfel 2014), σm=1300 kg, σb=1.5 m, σρ=0.0048 kg/m3, σv=4 m/s). Although in ground 

proximity the lower limits for vertical vortex position and for circulation are of no interest for operational use, they 

are computed here.  

Figure 6 shows an ensemble forecast according to the REA method. Both the individual model predictions and the 

ensemble mean are depicted. If we look at the uncertainty envelopes, of yet unknown probability level, we see that 

they widen with ongoing time as expected. Nevertheless, the envelopes do not sufficiently represent the variability of 

the atmosphere. Consequently, the luff vortex that hovers over the runway, due to weaker crosswind than captured 

with the 10 minute wind average, does not lie within the uncertainty bounds of the lateral prediction. Figure 7 shows 

the reliability factors for this landing under the prevailing wind conditions. 

From Table 5 we see that the ensemble is superior for Γluff and second best for Γlee, yluff, ylee, zluff and zlee. Translated 

into a skill factor, the ensemble outperforms the best member by 1.4 % if we include the y-forecast. Otherwise a skill 

improvement of 3.1 % can be achieved.  
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Figure 6. REA forecast for a single landing. Lidar measurements are depicted as error bars that show the 

measurement uncertainty.  

 

 

 

Figure 7. Reliability factors RD and RB for the individual members. RB is a global value that changes only for 

different ambient conditions. RD, however, differs from simulation to simulation. This diagram corresponds to the 

landing shown in Figure 6. The green values of APA3.2 regarding z are only theoretical factors, as APA3.2 is not 

employed for the ensemble mean of the vertical position.  

 

 

Table 5: performance of the REA ensemble and its individual members (median for 200 test cases). Skill sz,y,Γ 

considers all parameters, skill sz,Γ only the z and Γ forecast. 

 rmse Γluff rmse Γlee rmse yluff rmse ylee rmse zluff rmse zlee skill sz,y,Γ  skill sz,Γ 

REA  0.095 0.097 0.576 0.589 0.137 0.169 0.00 0.00 

TDP 2.1 0.099 0.096 0.901 0.622 0.257 0.176 -0.159 -0.136 

APA 3.4 0.149 0.128 0.949 0.561 0.212 0.185 -0.232 -0.262 

APA 3.2 0.218 0.180 0.989 0.548 0.201 0.188 -0.298 -0.362 

D2P 0.103 0.106 0.571 0.583 0.136 0.162 -0.017 -0.031 
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C. Bayesian Model Averaging 

The Bayesian Model Averaging (Hoeting et al. 1999) has been employed to temperature forecasts by Raftery et 

al. (2005). Instead of overall mean skill metrics, it employs the probability that a model is best, and its skill when it is 

the best among the ensemble. This can be formulated with the law of total probability. It describes the probability that 

B occurs in terms of the probability that An occurs, and the probability that B occurs given An (see equation (8)). 

        n

n

n

n

n ABPAPABPBP |   (8) 

Raftery et al. (2005) apply this to an ensemble forecast. In that example y denotes the quantity to be forecast and yT 

denotes the training data for I different statistical models M1,...,MI. The forecast pdd is then given by 

      T

i

Ii

i yMpMypyp 



,1

| . (9) 

p(y | Mi) is the forecast pdd of Mi alone and p(Mi yT) denotes the posterior probability of model Mi being correct given 

the training data. The resulting pdd p(y) is then the sum of the individual model pdds, weighted by their posterior 

probabilities. Referring this to dynamic models, the pdd quantifies the uncertainty about the best member in our 

ensemble.  Each of the forecasts f1,….,fI by model i has a posterior probability wi of being the best member among the 

ensemble and a conditional pdd gi(y | fi). The latter describes the accuracy of fi, given that it is the best forecast in the 

ensemble and is centered at the individual deterministic model forecast. The individual wi’s sum up to 1. The ensemble 

pdd is then defined by 

    



Ii

iiiI fygwffyp
,1

1 |,....,| . (10) 

1. Application 

Raftery et al. (2005) apply a maximum likelihood method to optimize wi and gi on the basis of the training dataset. 

However, we proceed differently and compute wi from the number of times that model i is best among the ensemble. 

Furthermore, the pdd gi associated standard deviation σi of each model i is replaced by the corresponding model rmse 

for each parameter, assuming that gi is normally distributed.  

Both σi and wi are calculated on the basis of the training dataset separately for each parameter and for both luff 

and lee vortices. Figure 8 shows the weighted pdds of all ensemble members at t*=0 when all models are initialized. 

These pdds need to be computed for any time step (Δt*=0.1) (see Figure 9) in order to derive the ensemble forecast 

(see Figure 10), where the pdd’s mean value is given by the individual deterministic model prediction and its standard 

deviation by the model performance within the training dataset. Unlike the REA approach, here the model weights do 

not depend on the ambient conditions. Figure 9 shows, that the Γ-forecast is well-dispersed, in contrast to the 

prediction of z and y. According to the scoring on the basis of the test dataset in Table 6, the ensemble is superior for 

luff and lee, second best for ylee, zluff and zlee, and second worst for yluff. This leads to an improvement of skill by 1.8 

% regarding all parameters, with respect to the best performing individual model. If only the z- and -forecast are 

included, the ensemble even improves the skill by 4.3 %. So even though we do not include a best member approach 

by rating the models for different weather conditions, the BMA method delivers good results. 
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Figure 8. BMA pdd of the lee vortex forecast for t*=0. All pdds are centered at the same value, which is for t*=0 

equal to the initial conditions. The model pdds(colored lines) are weighted and then summed up to obtain the 

ensemble forecast (black curve). The black dotted lines denote the 90 % uncertainty interval. 

 

 

Figure 9. BMA pdd of the lee vortex forecast for t*=2. The pdd centers are now shifted, as the models predict 

different values. As for t*=0, the individual pdds are weighted and then summed up. The black dotted lines denote 

the 90 % uncertainty interval. 

 

 

Figure 10. BMA wake vortex forecast for a single landing. No initial condition uncertainty was added to the 

uncertainty envelopes. By calculating σ from a training dataset that also exhibits uncertainty about the starting values, 

initial condition uncertainty is already considered beforehand. 
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Table 6:  Performance of the BMA ensemble and its individual members (median for 200 test cases). Skill sz,y,Γ 

considers all parameters, skill sz,Γ only the z and Γ forecast. 

 rmse Γluff rmse Γlee rmse yluff rmse ylee rmse zluff rmse zlee skill sz,y,Γ skill sz,Γ 

BMA  0.092 0.093 0.626 0.565 0.139 0.168 0.00 0.00 

TDP 2.1 0.099 0.096 0.901 0.622 0.257 0.176 -0.167 -0.151 

APA 3.4 0.149 0.128 0.949 0.561 0.212 0.185 -0.237 -0.272 

APA 3.2 0.218 0.180 0.989 0.548 0.201 0.188 -0.302 -0.368 

D2P 0.103 0.106 0.571 0.583 0.136 0.162 -0.018 -0.043 

 

D. Monte-Carlo Simulations 

The previous sections introduced methods that cover model uncertainty. The additional uncertainty in the initial 

conditions is taken into account by either adding measurement errors to the uncertainty bounds, or it is considered in 

the training phase.  In the case for the BMA method, the uncertainties in the initial conditions are included in the pdds. 

However, these approaches do not consider how the perturbed forecasts might develop in time due to model non-

linearity. To study this effect Monte Carlo simulations are utilized. The results can then be used to compute 

probabilistic envelopes. Monte-Carlo method is simple to implement and can effectively account for uncertainties in 

the initial conditions.  Computationally the method is expensive and although useful for systems level analysis of 

wake considerations in ATM concepts development, it may not be feasible for operational implementations. 

2. Application 

The sources of uncertainties in model initial conditions include aircraft dependent parameters (V0 and b0); initial 

vortex location (z0 and y0); and the ambient environment characterized by eddy dissipation rate (), stratification (N), 

and the crosswinds (u). If the probability density functions can be constructed, then they are utilized, otherwise 

uniform distributions are used within prescribed bounds. 

In the current implementation, b0 can either be held constant based on elliptical wing loading or varying between 

0.95b0 and b0 (Holzäpfel 2014).  The initial circulation value is varied between 0.9-1.20. Perturbations for y0 are 

generated using a normal distribution with mean set to y0 and =82ft (25m) (Holzäpfel 2014).  Similarly for z0, a 

normal distribution is used with mean set to z0 and =23ft (7m).  If the aircraft is in IGE, then  is set to 13ft (4m). 

The perturbations in the environmental initial conditions can be based on uniform distributions within prescribed 

bounds or obtained from probability density functions.  An average of the vertical profile truncated at z0 (height of 

vortex generation) is used as the mean. Once the averages of eddy dissipation rate and crosswinds have been 

calculated, k perturbations are generated using the probability density functions.  Uniform weather profiles are 

generated from these perturbations.  Simulations are performed with all inputs, and the standard deviation and the 

mean are calculated for each time step.  The standard deviation is then added and subtracted to the mean to create 

bounds for circulation strength and vortex location. 

An example from the Memphis 1995 wake vortex field experiment (Campbell 1997) is given in Figures 11-13 to 

illustrate the methodology. The perturbations in the initial location were introduced as described above.  The initial 

circulation strength was held constant and the initial vortex spacing was assumed to be varying between 0.95b0 and 

b0. The weather probability density functions were obtained from the Memphis 1995 weather data. The environmental 

initial conditions for Case 1995-08-10-233255 are given in Figure 11. The horizontal line in the Figure 11 plots 

indicate the height of vortex initialization.  The mean was calculated by averaging the profile values below this height. 

The perturbations in initial conditions (Figure 12 – top row) were generated using the mean for the initial profile and 

the weather probability density functions. The probability density functions for this case are shown in Figure 12 

(bottom row).  The generation of the theta profiles is done from the potential temperature gradient probability density 

function. 

A total of 400 random perturbations in initial conditions were generated and the results of the simulations are given 

in Figure 13 (top row). The mean, ±2 bounds, the deterministic APA v3.4 solution, and observations are shown in 

Figure 13 (bottom row).  In this example only APA v3.4 was used.  The prediction of vortex location is well bounded 

within the 2 bounds.  In the case of circulation prediction, several observation are outside the predicted 2 bounds. 

However it should be noted that most of these circulation values are greater than the value of 0 that was used to 

initialize the model. 
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Figure 11. Case 1995-08-10-233255.  EDR, crosswind and potential temperature initial conditions. 

 

 
Figure12. Case 1995-08-10-233255.  Generated input profiles for EDR, crosswind and theta and the corresponding 

probability density functions. 

 

 
Figure 13. Case 1995-08-10-233255.  The top row shows the results from all simulations.  The bottom row shows 

the mean, and the bounds generated from the Monte-Carlo run. 
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A sensitivity analysis was performed by looking at the convergence of the normalized root mean squared error 

(NRMSE) for different numbers of perturbations, k.  The result given by using k = 4096 was used as the reference. 

Figure 14 shows the convergence of , y, and z predictions. The error in Monte-Carlo prediction decreases by 

increasing the number of perturbations. The prediction of lateral transport is most sensitive to the number of 

perturbations and stays larger than  and z when k is increased. 

 

 
Figure 14. Convergence of the NRMSE with increased number of simulations. Vortex circulation, (left), 

vortex descent, z (middle), and Lateral transport, y (right). 

 

The Monte Carlo method was applied to four different wake vortex datasets: Memphis 1995 (MEM95), Dallas/Ft. 

Worth 1997 (DFW97), Denver 2003 (DEN2003), and WakeOP, to test its performance. Every case in the dataset that 

had lidar measurements for both vortices of the wake vortex pair was used to evaluate the method. This slightly 

reduced the total number of cases (wake tracks) which could be used in the evaluation.  To determine the success rate 

of the Monte Carlo simulations, the number of measured vortices within the ±2 bounds of the predictions were 

counted and divided by the total number of vortices available in the case. In case of  an additional metric was defined 

which looked at the number of measurements bounded by the maximum predicted circulation strength. For circulation 

strength this is a more meaningful metric compared to the ±2 bounds. 

The four models were first ran individually with 10 perturbed initial conditions and then a multi-model ensemble 

was calculated from these four runs.  Identical sets of perturbations were provided to all four models in these runs. 

The final time of simulation was determined by the shortest final simulation time amongst the four models.  All other 

model outputs were truncated to match the shortest simulation time.  This was required in order to construct the multi-

model ensemble. 

The success rates for all models and the multi-model ensemble are given in Tables 7-10 for different field 

experiments. In nearly all metrics and cases, the multi-model ensemble gave the highest success rates compared to 

individual fast-time models. In some cases the circulation prediction success rate of an individual model was 

significantly lower than the multi-model ensemble. The y-location was predicted with sufficient confidence with a 

success rate in the range of 90% or greater. Compared to the lateral transport, the success rate for vortex descent 

prediction was lower.  For example using the MEM95 data, the success rates for vortex height was 63%, 64%, 69%, 

and 67% for APA v3.2, APA v3.4, TDP v2.1, and D2P respectively.  As expected, the prediction of maximum bounded 

circulation was better compared to ±2 bounds prediction of circulation in all cases for all models and the multi-model 

ensemble. Another set of simulations (Run 2) was conducted in which a separate set of random initial conditions were 

provided for each model.  The multi-model ensemble was then calculated from these simulations.  This was done only 

using MEM95 data and the results are given in Table 11.  The slight improvement in the multi-model ensemble 

predictions can be attributed to the increased number of initial perturbations (40 instead of 10). 

Figures 15 and 16 show two Monte-Carlo simulations from the MEM95 set. A total of 10 random perturbations in 

initial conditions were generated for each model and are shown in the top row of Figures 15-16. The mean, ±2 

bounds, the deterministic model solutions, and observations are shown in the bottom row of Figures 15-16.  The 

prediction of vortex location is well bounded within the 2 bounds.  As in the previous example, several observation 

are outside the predicted 2 bounds for circulation. Again it should be noted that these circulation values are greater 

than the value of 0 that was used to initialize the model and their inclusion in model evaluation adversely effects the 

success rates as well as other metrics such as root mean square error and bias (Appendix A). The prediction of 2 

bounds for lateral transport was generally overly conservative in these simulations and can be improved by further 

refining the initial crosswind pdd. 
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Table 7:  Success rates for models compared with the multi-model ensemble (MEM95) 

Parameter APA v3.2 APA v3.4 TDP v2.1 D2P Multi Model 

y 0.88 0.88 0.88 0.89 0.89 

z 0.63 0.64 0.69 0.67 0.68 

within bounds 0.48 0.50 0.53 0.48 0.66 

under max 0.56 0.69 0.79 0.75 0.77 

 

 

Table 8:  Success rates for models compared with the multi-model ensemble (DFW97) 

Parameter APA v3.2 APA v3.4 TDP v2.1 D2P Multi Model 

y 0.99 0.99 0.99 0.99 0.99 

z 0.72 0.71 0.72 0.73 0.73 

within bounds 0.53 0.51 0.51 0.45 0.60 

under max 0.66 0.73 0.81 0.78 0.78 

 

 

Table 9:  Success rates for models compared with the multi-model ensemble (DEN03) 

Parameter APA v3.2 APA v3.4 TDP v2.1 D2P Multi Model 

y 0.99 0.99 0.99 0.99 0.99 

z 0.70 0.68 0.74 0.73 0.74 

within bounds 0.56 0.48 0.35 0.33 0.58 

under max 0.90 0.95 0.94 0.97 0.98 

 

 

Table 10:  Success rates for models compared with the multi-model ensemble (WakeOP) 

Parameter APA v3.2 APA v3.4 TDP v2.1 D2P Multi Model 

y 1.00 1.00 1.00 1.00 1.00 

z 0.66 0.56 0.40 0.48 0.65 

within bounds 0.60 0.64 0.71 0.52 0.98 

under max 0.60 0.64 0.79 0.73 0.98 

 

 

Table 11:  Success rates for models compared with the multi-model ensemble (MEM95) – Run 2 

Parameter APA v3.2 APA v3.4 TDP v2.1 D2P Multi Model 

y 0.88 0.90 0.90 0.90 0.90 

z 0.63 0.64 0.67 0.68 0.70 

within bounds 0.48 0.48 0.54 0.48 0.67 

under max 0.56 0.68 0.80 0.76 0.80 
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Figure 15. Case 1995-08-07-001041.  The top row shows the results from all simulations.  The bottom row shows 

the mean, and the bounds generated from the Monte-Carlo run along with the results of deterministic simulations of 

each model. 

 

 
Figure 16. Case 1995-08-08-000643.  The top row shows the results from all simulations.  The bottom row shows 

the mean, and the bounds generated from the Monte-Carlo run along with the results of deterministic simulations of 

each model. 

IV. Comparison of the Methods 

In this study, neither the deterministic output of the MCS, nor the probabilistic output of the REA and BMA have 

been further investigated. Hence a direct comparison, although planned for the future, is only possible for the DEA, 

the REA and the BMA. Table 12 shows how the approaches perform relatively to the DEA method. Both advanced 
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approaches outperform the DEA by at least 18 %. In direct comparison of skill, the BMA performs slightly better than 

the REA, even though the latter delivers better forecasts for yluff and zluff. Comparing the robustness of both advanced 

methods, we find that the BMA is less sensitive to the training data concerning ensemble parameters. Furthermore the 

probabilistic envelope of the BMA is very straightforward and considers initial condition uncertainty already in the 

training phase. In contrast the initial condition uncertainty must be added on top of the envelope of the REA method, 

which only considers model uncertainty. 

 

Table 12: performance comparison of the individual ensemble methods (median rmse for the test dataset). 

A positive skill factor indicates, that the respective method outperforms the DEA method on average. 

 rmse Γluff rmse Γlee rmse yluff rmse ylee rmse zluff rmse zlee skill s 

DEA 0.115 0.104 0.829 0.566 0.199 0.167 0.00 

REA  0.095 0.097 0.576 0.589 0.137 0.169 0.1872  

BMA  0.092 0.093 0.626 0.565 0.139 0.168 0.1866 

 

V. Summary 

This paper investigates the capability to improve wake vortex forecast by combining several independent wake 

vortex models in a Multi-Model Ensemble. The models that are used in this common study of DLR and NASA were 

exchanged in an inter-agency cooperation and comprise APA3.2, APA3.4, TDP2.1 (NASA models) and D2P (DLR 

model). The analysis is based on the following four Multi-Model Ensemble approaches: 

 

- Direct Ensemble Average (DEA) 

- Reliability Ensemble Averaging (REA) 

- Bayesian Model Averaging (BMA) 

- Monte-Carlo Simulation (MCS) 

 

As the independency of the models is crucial for a successful ensemble, the models are compared in an ANOVA 

analysis. This reveals that APA3.2 and APA3.4 do not differ in a statistically significant way regarding the forecast 

of the vertical vortex position. Subsequently the different ensemble methods are introduced and then evaluated on the 

basis of a test dataset (wake vortices of landing aircraft, captured by lidar).  

The REA approach (Giorgi and Mearns 2002) utilizes a performance (model bias) and a convergence criterion 

(distance of model forecast to ensemble mean) to rate the skill of the models. In contrast the BMA method (Hoeting 

et al. 1999, Raftery et al. 2005) only uses the errors made by the models when they deliver the best forecast among 

the ensemble for the rating of its members. In addition, the BMA dresses each single model forecast with a pdd that 

describes the model accuracy. The scoring shows that both the REA and the BMA approach can outperform the model 

forecast of the best member in the test dataset by at least 1.7 %, and even more if only the z and Γ forecast are regarded. 

A ranking of the methods on the basis of 200 landings indicates that the advanced approaches outperform the DEA 

by at least 18% on average (see Table 12). Nevertheless, the DEA approach outperforms the REA method for ylee and 

the BMA method for zlee. The direct comparison of the advanced approaches reveals that the BMA approach gives 

slightly better results than the REA approach when looking at the skill factors (see Table 12). The BMA has proven 

to be more robust. Contrarily to the REA approach it is not necessary to calculate weights that depend on the ambient 

weather conditions to obtain good results. In addition its uncertainty envelopes are straightforward as they consider 

initial condition uncertainties by design. They can be chosen according to any desired probability level from the 

ensemble pdds. At this stage we assume that the standard deviations of the individual predictions do not depend on 

vortex age. Extending the method by this feature is planned. 

Finally a Monte-Carlo Simulation is utilized to study the effect of multiple models on the coverage of possible 

solutions. The MCS employs model runs based on perturbed initial conditions, such as crosswind speed, turbulence 

and potential temperature. Each model uses the same set of perturbations, which is randomly generated from pdds that 

are derived from a set of observations. To determine the success rate of the multi-model MCS the number of 

observations within the ±2 bounds are calculated and compared with the single model MCS. The results suggest that 

the success rate is improved as the coverage of the solution space can be enhanced by employing multiple models, 

especially when regarding the Γ-forecast. Runs with different sets of perturbations for each model show similar results. 
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In contrast to the other methods no deterministic output is determined for the MCS and thus no direct comparison can 

yet be made concerning the ensemble mean. 

In a further study, the amount of observations used for training and scoring shall be increased in order to enhance 

the significance of the results. In this study only landings with z0* > 1.7 are regarded for the BMA and REA. Thus 

future work shall also investigate the performance of ensemble wake vortex predictions for higher initial altitudes. 

Although both the REA and the BMA offer probabilistic envelopes, this paper focuses on their deterministic 

performance. Further studies will therefore also concentrate on their probabilistic skill. This way they can be compared 

with the MCS on the basis of a common dataset.  

 

Appendix A: Evaluation of the Fast-Time Wake Vortex Models 

In this section the fast-time models are evaluated using data from four different wake vortex field experiments: 

- Memphis 1995 Field Experiment (MEM95).  Details on the field experiment are given in Campbell et al. 

(1997). Wake observations were made using a continuous wave lidar. 

- Dallas/Fort Worth 1997 field experiment (DFW97).  See Dasey et al. (1997) for description of the field 

experiment.  Wake observations were made using a continuous wave lidar. 

- Denver 2003 Field Experiment (DEN03).  Details on the field experiment are given in Dougherty et al. 

(2004). Wake observations were made using a pulsed lidar. 

- Oberpfaffenhofen Field Experiment (WakeOP). Details on the field experiment are given in Holzäpfel et 

al. (2014). Wake observations were made using a pulsed lidar. 

The accuracy of model predictions was quantified in terms of root mean square error (Errorrms), mean absolute 

error (Errormae), and Bias: 
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The model prediction errors for all MEM95, DFW97, DEN03, and WakeOP cases are given in Tables A.1 through 

A.4. 

 

 

Table A.1:  Fast-Time Models Evaluation using Memphis 1995 Data – (305 Cases) 

Model 

Circulation 

(normalized by 0) 

Lateral Transport 

(normalized by b0) 

Altitude 

(normalized by b0) 

rmse mae bias rmse mae bias rmse mae bias 

TDP2.1 0.263 0.224 0.029 1.010 0.832 0.095 0.528 0.450 0.072 

APA3.4 0.245 0.210 -0.053 0.979 0.807 0.102 0.544 0.463 0.143 

APA3.2 0.256 0.221 -0.122 0.996 0.820 0.108 0.545 0.466 0.185 

D2P 0.246 0.210 -0.024 1.009 0.833 0.116 0.559 0.474 0.097 
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Table A.2:  Fast-Time Models Evaluation using Dallas 1997 Data – (208 Cases) 

Model 

Circulation 

(normalized by 0) 

Lateral Transport 

(normalized by b0) 

Altitude 

(normalized by b0) 

rmse mae bias rmse mae bias rmse mae bias 

TDP2.1 0.289 0.242 -0.002 0.644 0.519 -0.216 0.290 0.241 0.047 

APA3.4 0.273 0.227 -0.076 0.605 0.490 -0.188 0.286 0.238 0.055 

APA3.2 0.278 0.233 -0.131 0.608 0.493 -0.188 0.288 0.239 0.036 

D2P 0.288 0.241 -0.022 0.607 0.494 -0.189 0.281 0.232 -0.017 

 

 

Table A.3:  Fast-Time Models Evaluation using Denver 2003 Data – (862 Cases) 

Model 

Circulation 

(normalized by 0) 

Lateral Transport 

(normalized by b0) 

Altitude 

(normalized by b0) 

rmse mae bias rmse mae bias rmse mae bias 

TDP2.1 0.296 0.270 0.224 0.729 0.596 -0.142 0.574 0.478 0.070 

APA3.4 0.227 0.198 0.152 0.724 0.592 -0.144 0.614 0.512 0.195 

APA3.2 0.210 0.177 0.087 0.729 0.593 -0.133 0.622 0.518 0.236 

D2P 0.254 0.227 0.184 0.716 0.586 -0.143 0.594 0.494 0.087 

 

 

Table A.4:  Fast-Time Models Evaluation using WakeOP Data – (31 Cases) 

Model 

Circulation 

(normalized by 0) 

Lateral Transport 

(normalized by b0) 

Altitude 

(normalized by b0) 

rmse mae bias rmse mae bias rmse mae bias 

TDP2.1 0.104 0.086 0.035 0.832 0.707 0.447 0.313 0.266 0.157 

APA3.4 0.099 0.084 -0.015 0.835 0.710 0.444 0.285 0.243 0.117 

APA3.2 0.141 0.120 -0.090 0.865 0.731 0.456 0.288 0.249 0.107 

D2P 0.108 0.091 -0.001 0.860 0.729 0.382 0.236 0.203 0.085 
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