
Alvarez 1 
 

Oscar Alvarez III 

Dr. Emmet Tomai 

CMPE 3300.01 

9 May 2016 

NASA Pathways Internship: Spring 2016 

I was selected to contribute to the Data Systems and Handling Branch under the Avionics 

Flight Systems Division at the Lyndon B. Johnson Space Center in Houston, Texas.  There I 

used my knowledge from school, as well as my job experience from the military, to help me 

comprehend my assigned project and contribute to it.  With help from my mentors, supervisors, 

colleagues, and an excellent NASA work environment, I was able to learn, as well as 

accomplish, a lot towards my project.  Not only did I understand more about embedded systems, 

microcontrollers, and low-level programming, I also was given the opportunity to explore the 

NASA community. 

My specific role, as a software computer engineer, was to contribute to the integration of 

a resistive touch LCD screen into the Modular Integrated Stackable Layers (MISL) system used 

for current and future flight systems in space flight vehicles (International Space 

Station/ORION).  The MISL is a stack of boards comprised of the MSP430 microcontroller, a 

power board, an Ethernet board, and a pinout board used to connect to a single, or multiple 

devices depending on the desired function (In my case, it was an LCD screen with a 

CO2/temp/humidity sensor). 

I was assigned to understand embedded systems, the MSP430 microcontroller, and low-

level programming, and apply that knowledge into using an LCD screen that displayed dynamic 

sensor data while storing that data for analysis.  The idea was to be able to view sensor data, with 



Alvarez 2 
 

a brief history, on the LCD screen.  The touch screen would be used to change between different 

sensor readings, view in different graphing formats, and to scroll through data history.  I didn’t 

have to start from scratch, at least.  A previous pathways intern, from a previous semester, 

developed most of the drivers needed to send information to the LCD screen.  Other drivers used 

to initialize the MISL stack were developed by NASA computer scientists/engineers (I didn’t 

have to worry about initializing clocks or pin assignments).  Unfortunately, I was unable to 

contribute to the touch screen capabilities.  The LCD backpack (A board used to communicate 

between the LCD and the MSP430) was only configured for non-touchscreen LCDs; data could 

only be sent to the LCD and not received from.  An OSSI intern (Temporary interns) was 

assigned in designing a capable backpack and should be done by the end of this semester. 

My first assignment was to understand the MSP430, Inter Integrated Circuit (I2C), and 

Serial Peripheral Interface (SPI).  I had no hands on opportunities, with the hardware or software, 

since the only computer science guru was on annual leave for 2 weeks.  I educated myself by 

looking up documentation and datasheets.  Once I found out that I couldn’t receive information 

from the LCD screen due to the current capabilities of the hardware, I stopped focusing on 

I2C/SPI.  I then focused my attention on understanding the MSP430 and how to communicate 

with it.  I used Code Composer Studio (CCS), a code editor developed by Texas Instruments 

made specific for MSP microcontroller families, and took the initiative by asking for a MISL 

stack and an LCD screen (which I put together myself) to explore with. 

At the beginning of my tour, my project was not yet given to me and most of my first 

month was used exploring the code (source and header files made by the previous pathways 

intern and current NASA employees for the MSP430), which was done using C programming.  I 

then grabbed a breadboard, a 1k resistor, some wires, and made a LED light blink.  Once I felt 



Alvarez 3 
 

confident enough, I decided to get ambitious.  I recreated HAL9000 from the movie 2001: A 

Space Odyssey.  I displayed him on the LCD screen with the famous nameplate and his glowing 

eye, while famous quotes from the movie popped up every once in a while.  I presented it to my 

supervisor and branch manager and explained to them that I now knew pixel manipulation, 

character display, screen orientation, RGB display, and a basic understanding of CCS.  After 

that, my main project, described previously, was given to me. 

I was asked to display a graph that would show dynamic sensor data on the LCD screen.  

Not having a sensor to work with, I used multiple random number generators in a single forever 

loop to simulate different sensor data inputs and displayed it on a bar graph.  After I showed this 

to my supervisors, they then decided a line graph that showed a brief history would be more 

beneficial.  That way the behavior of the sensor data could be monitored; any unusual or drastic 

changes, within a desired range, in the environment of a space vehicle would be visible via 

display and be immediately observed. 

I understood right away that a dynamic line graph resembled a queue.  The whole queue 

would be displayed and updated as new sensor data came in; truncating the old and inserting the 

new.  The size of the queue was restricted since the width of the display was limited.  I already 

had to display each item out every time the queue was updating so I didn’t want to have to shift 

items in an array in addition to this (There was double display of the queue as well; I had to 

black out the old displayed queue and color in the new to update its position on the graph).  The 

more obvious solution was to use a linked list and push the new while popping the old. 

The linked list wouldn’t compile.  I went over the code and couldn’t see where I went 

wrong.  I was actually stumped on this for a while until I found out, from online forums, that I 

couldn’t use a “class” linked list in C.  Since I couldn’t use a “class” linked list, I resorted to 



Alvarez 4 
 

using a “struct” linked list.  My code compiled, but when implemented it would only display 15 

plots on my graph then start printing junk.  Again, I was stumped on this.  After not being able to 

find anything online on this matter I asked my mentor, the only CS personnel in our branch, for 

assistance.  He taught me to navigate through the registers to see exactly where my information 

was being stored.  What we found out was that we were running out of heap space.  It would 

save up to 15 plots, and when it ran out of heap the pointer would point to some restricted 

registers that couldn’t be written over, but were still allowed to be pointed at (The junk that was 

being displayed was whatever was in those registers).  CCS had a feature that allowed me to 

increase the heap space.  Once this was accomplished, my dynamic line graph worked great. 

Although, I had accomplished my line graph, I was further advised that using dynamic 

memory allocation on an embedded system, with limited memory, wasn’t the best method.  I had 

to abandon my linked list idea and started looking into 2D arrays(X and Y coordinate elements).  

Again, I wanted to avoid shifting all the elements in the array and found that a circular array was 

the best solution; the newest plot was saved over the oldest.  With the circular array implemented 

in my code, I was able to display my dynamic graph without a problem. 

The next step was to actually send real data into the MSP430 and have my code display it 

to the LCD screen.  I was given a csv file that contained real data, from in orbit flights, with 

CO2, temperature, and humidity readings.  My supervisor wanted me to send this information 

from my computer.  I used Visual Studio C++ to write a program that read the csv file and sent 

the data out the USB port(using the Serial Port Class) through the RS232 and then to the 

MSP430.  For some reason, the MSP430 was not receiving the data via its receiving register.  In 

order to find out if my code was actually being sent, I hooked up an oscilloscope to the RS232 

and captured the first string of characters that were sent.  I looked up the characters in the string 



Alvarez 5 
 

on the ASCII table, converted their hex to binary, inverted the binary (RS232 inverts data), and 

read it backwards (little endian) to see if it matched the screen capture on the oscilloscope (which 

it did).  This not only stumped me but my mentor as well.  It turns out we just had to unplug the 

MISL stack and plug it back in again. 

The second part of this step was to receive the data from the computer.  As I was writing 

my code on CCS, I saw a problem.  My code was being customized to read this data that was 

being sent from my computer, without knowing how the actual sensor sent the data.  When I 

brought this up to my mentor and supervisor, they were able to get me the same kind of sensor 

used in space flight vehicles.  I was able to receive the information from the sensor (CO2 

filtered, CO2 unfiltered, temperature, humidity), use interrupts and buffers to read and 

distinguish the data into their corresponding variables (The sensor sent out one whole string, at a 

time, that included all four readings, which I had to translate and place into separate variables).  I 

then converted the separate string variables into integers and used the methods provided in the 

data sheet to get the desired results (For example:  x = 01221; x = (x – 1000)/10; // x = 22.1 

degrees Celsius). 

I have not sent this data into my line graph display yet, but have been able to create a 

digital display of the current temperature, humidity, and CO2 levels (both filtered and 

unfiltered).  I still have one more week to accomplish this.  Whatever isn’t finished will get 

passed on to the next pathways intern.  Looking at this doesn’t seem like a lot, but I spent a lot of 

time on each step trying to learn, understand, implement, and solve every problem I encountered.  

I now have a better understanding and experience in microcontrollers, C programming, low-level 

coding, embedded systems, serial ports, interrupts, buffers, LCD Displays, sensors, 



Alvarez 6 
 

oscilloscopes, soldering, etc.  I believe this experience will contribute a lot to my growth as a 

Computer Engineer. 

I am very grateful for the time I’ve been given here and have learned a lot from this 

experience.  My entire tour wasn’t just on my project alone.  Besides the training courses, 

professional development courses, committee meetings, branch meetings, division meetings, 

lectures, and a fire drill, I was able to explore much more of NASA than I could ever hope for.  

My tours (tours were during work hours and were heavily encouraged by management 

since, being pathways interns, we are able to select which location we wanted our next internship 

to be) included a trip to the Neutral Buoyancy Laboratory (NBL), Power and Propulsion 

Laboratory, Eagle Works Laboratory, Ellington Field, International Space Station Mock Ups, 

Chamber A with the James Webb Telescope (Hubble replacement) undergoing testing, Historic 

Mission Control, Mission Control, Future Mission Control, etc.  I even got to attend a focus 

group of the greatest engineering minds at NASA working together to solve an out of this world 

problem (literally), watch them break it down, and work together to come up with solutions (I 

can’t discuss anything specific). 

Fortunately, as a pathways intern, my adventure does not stop.  I will be transferred to the 

Flight Operations side of NASA to see what it’s like to be trained as a flight controller, and given 

an opportunity to sit in Mission Control!  I will start right after my spring tour is finished.  I look 

forward to continuing my professional growth here at Johnson Space Center. 


