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With the recent development of multi-dimensional thermal protection system (TPS) material response
codes, the capability to account for surface-to-surface radiation exchange in complex geometries is critical.
This paper presents recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR)
code developed at NASA’s Johnson Space Center. This work also describes the different numerical methods
implemented in the code to compute geometric view factors for radiation problems involving multiple surfaces.
Verification of the code’s radiation capabilities and results of a code-to-code comparison are presented. Finally,
a demonstration case of a two-dimensional ablating cavity with enclosure radiation accounting for a changing
geometry is shown.

Nomenclature

A ⊂ B The set A is a subset of the set B
a ∈ A a is an element of a set A
A↦ B A maps to B
u ⋅ v Standard dot product of u and v

∇f Gradient of scalar function f
∇ ⋅ v Divergence of vector field v

u ⊥ v u is orthogonal to v

α Absorptivity
Γ Domain boundary (m2) or volume fraction in virgin material
ε Emissivity
ε Very small quantity (Section V)
θi Angle between face normal and segment S connecting two faces i and j in view factor definition
κ Permeability tensor (m2)
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µ Dynamic viscosity (Pa ⋅ sec) or Lamé’s second parameters (Pa)
ν, ν̂ Normal vectors
ξ Separating axis

Πξ Orthogonal projection operator onto ξ
ρ Density (kg/m3) or reflectance
σ Stefan-Boltzmann constant (W/m2

⋅K4) or stress (Pa)
τ Any of several tolerances (Section V)
ϕ Porosity
Ω Domain volume (m3)
ω̇ Mass source (kg/m3

⋅sec)

A Face area (m2)
B “Mother box,” the box to which all other tree boxes belong (head node of tree)
B General bounding box (node in tree)
C Monte Carlo confidence level
E Monte Carlo error
Ei Emittance from face i (W/m2)
eo Total internal energy (J/kg)
erf Error function
F Finite element face
Fij View factor between faces i and j

F spacei View factor to space from face i
Gi Irradiation on face i (W/m2)
H1 Set of square-integrable functions with first derivatives also square-integrable
H1

0 Set of H1 functions which vanish on the boundary
ho Total enthalpy (J/kg)
Ji Radiosity from face i (W/m2)
K Convex set or geometric object (e.g., finite element face)
K Kernel (1/m2)
k Thermal conductivity tensor (W/mK)
L Length of interval of projection of a convex hull onto a separating axis ξ
` Length of interval of projection of an object K onto a separating axis ξ
m Number of rays casted from face i which intersect face j in Monte Carlo view factor computation
ṁ Mass flux (kg/m2

⋅sec)
N̄ Number of nodes on a given face
N Total number of rays cast from a given face in Monte Carlo view factor approach
ni ith node of a face or other geometric object
P Pressure (Pa)
p Origin of ray (translated outside box)
pid Processor ID
Q̇ Energy source (W/m3)
q Origin of ray on face (original origin)
q Heat flux (W/m2)
R The set of real numbers
Rd The set of d-tuples of real numbers
Ri Reflection term in Sequential Reflections approach (W/m2)
r Ray direction or position vector
r Random number used in Monte Carlo view factor approach
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S Segment connecting centroid of two faces in view factor definition (m)
T Temperature (K)
Teq Equivalent temperature (K)
t Time (sec)
v Velocity (m/sec)
t
(i)
0 Entry time of ith coordinate into a box B
t
(i)
1 Exit time of ith coordinate out of a box B

xmax Maximal coordinate of a box B (upper right corner in 2D)
xmid Midpoint of xmin and xmax, centroid of box
xmin Minimal coordinate of a box B (lower left corner in 2D)

Subscripts and Superscripts

∞ Far-field state
cond Denotes conduction term
g Quantity of the gas
IR Infrared
m Quantity of the mesh

nonIR Belonging to frequency spectrum different than infrared
rerad Denotes reradiation term
s Quantity of the solid
w Wall state

Per convention, vector quantities are denoted in boldface. The ith coordinate of a vector v is denoted v(i).

I. Introduction

During re-entry, a spacecraft’s thermal protection system (TPS) is exposed to different modes of heat transfer
such as convection, conduction and radiation. When assessing the material thermal response in complex geometries,
which result in partial or total enclosures, the radiation exchange of thermal energy between the different parts of an
enclosure must be properly accounted for. Enclosures such as those resulting on a vehicle’s TPS from micrometeoroid
and orbital debris (MMOD) impact are of particular importance to spacecraft designers.

With the recent development of multi-dimensional thermal material response codes, including the capabilities to
account for radiative heating is essentially a requirement. This paper presents the recent efforts to implement surface-
to-surface radiation exchange capabilities in the CHarring Ablator Response (CHAR) code developed at NASA’s John-
son Space Center. This work also describes the different numerical methods implemented in the code to compute view
factors for radiation problems involving multiple surfaces. Furthermore, verification of the code’s radiation capabilities
are demonstrated by comparing solutions to analytical results and to other codes.

II. Governing Equations

The radiation capabilities described in this work are implemented within the CHAR framework. CHAR is a
1D/2D/3D material thermal response code which solves general heat transfer problems on decomposing charring
ablators as well as non-decomposing, non-charring TPS materials, in serial or parallel. The general governing equa-
tions being solved in CHAR are briefly outlined in this section for completeness; however, a more complete description
can be found in [1].

The equations that govern the solid/gas system of the porous charring ablator include energy and mass conservation
equations for the solid as well as the Navier-Stokes equations as applied to all of the gaseous species considered. In
the general case, it is possible that the pyrolysis gases react with the remaining solid, or deposit residue (coke) on
the solid, but these phenomena are neglected. Under the assumptions that the pyrolysis gas is in thermochemical
equilibrium and the solid and gas are in thermal equilibrium, the solid energy equation on a moving mesh reduces to
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a nodal mixture energy equation given by

∂(ρeo)
∂t

∣
node

= ∇ ⋅ (k∇T ) −∇ ⋅ (ϕρghogvg) + Q̇ + vm ⋅∇(ρeo) (1)

where ρ, eo, ϕ, ho, v, and Q̇ denote density, total energy, porosity, total enthalpy, velocity, and volumetric energy
source, respectively, and the subscript g denotes a quantity with respect to the pyrolysis gases. And vm denotes the
mesh velocity at a node. Since ablators in general can be anisotropic materials, the thermal conductivity, k, is a second
order tensor.

If it is assumed that all solid decomposition results in pyrolysis gas generation, the gases are free to flow through the
porous medium, and the gases occupy all of the pore space, then the nodal gas mass conservation equation, including
mesh convection terms, is given by

∂(ϕρg)
∂t

∣
node

= ω̇g −∇ ⋅ (ϕρgvg) + vm ⋅∇(ϕρg) (2)

where the porous flow gas velocity is given by a porous flow law such as Darcy’s law:

vg = −
κ

ϕµ
∇P (3)

The solid mass conservation equation is solved on a stationary mesh, and is simply

∂ρs
∂t

∣
x
= ω̇s (4)

CHAR discretizes the governing equations according to the Galerkin finite element method. Multiplying the energy
equation, Eq. (1), by a suitable test function, v, and integrating over the domain Ω while integrating the second and
third terms by parts to give the natural boundary condition terms, the weak statement becomes: Find ρeo ∈ H1 such
that

∫
Ω
[v ∂(ρeo)

∂t
+∇v ⋅ (k∇T ) −∇v ⋅ (ϕρghogvg) − vvm ⋅∇(ρeo) − vQ̇]dΩ

+ ∮
Γ
(vhogṁg + vq̇conds)dΓ = 0 ∀v ∈H1

0 (5)

where the boundary mass flux due to gas convection is

ṁg = (ϕρg)vg ⋅ ν̂ (6)

and the boundary heat flux is
qconds = −k∇T ⋅ ν̂ (7)

and ν̂ is the element face normal vector.
Likewise, a Galerkin weak statement can be developed for the gas mass conservation equation, Eq. (2): Find

ϕρg ∈H1 such that

∫
Ω
(∂(ϕρg)

∂t
v −∇v ⋅ (ϕρgvg) − vvm ⋅∇(ϕρg) + ω̇sv)dΩ + ∮

Γ
vṁgdΓ = 0 ∀v ∈H1

0 (8)

In CHAR, the system of equations is advanced in time according to first and second order implicit time integrators.
The nonlinear set of governing equations are solved in parallel via Newton’s method with exact complex-perturbation
Jacobians, and several options are available via the PETSc library [2] to solve the implicit linear system.

There are many different boundary conditions available for the energy and gas equations in CHAR such as specified
convective heating, specified heat flux, specified temperature, contact conduction, specified pressure, specified mass
flux, thermochemical ablation using B’ tables, specified ablation, CFD coupling, surface melting, etc. This work
focuses on the code’s enclosure radiation capabilities, which are described in further detail in the following sections.
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III. Enclosure Radiation

CHAR models the surface-to-surface radiation exchange within enclosure assuming each surface behaves as a
diffuse-gray surface. That is, each surface is a diffuse emitter, a diffuse absorber, and a diffuse reflector, and opaque.
In addition, the emissivity and absorptivity are treated only as functions of temperature, and only cases with non-
participating media are considered.

At each surface, the net radiative heat flux from a face, qi, is the flux emitted, Ei, less the amount of the incident
radiation, Gi:

qi = Ei − αiGi (9)

where the emitted energy from each face is assumed to be entirely due to IR radiation, which is given by the well-
known relationship,

Ei = σεiT 4
i (10)

CHAR has the capability to model the energy exchange in an enclosure due to two distinct spectral “groups”:
Infrared (IR) and non-Infrared (nonIR) radiation. IR-radiation is the most common mode of modeling the radiation
exchange within an enclosure. However, modeling the heating due to a nonIR radiation source can be of great impor-
tance in problems involving solar UV radiation, or radiation originating from the shock-layer of a re-entry vehicle, for
instance. Expanding the absorbed flux into IR and nonIR components, Eq. (9) can be rewritten as

qi = Ei − (αIRi GIRi + αnonIRi GnonIRi ) (11)

where the flux emitted is always implied to be due to IR-energy as defined in (10).
The total IR incident radiation, GIRi , is a function of the energy (radiosity) leaving each of the other surfaces in the

enclosure. Assuming an opaque surface, The IR-component radiosity from a surface i is given by the energy emitted
by that surface, and the IR energy reflected off of that surface as follows

JIRi = Ei + ρIRi GIRi (12)

with an IR reflectance given by
ρIRi = 1 − αIRi (13)

For either IR or nonIR radiation, the incident radiation can then be determined from the total radiation leaving all
N surfaces in the enclosure

AiGi =
N

∑
j=1

AjFjiJj (14)

where Fji is the geometric view factor (or configuration factor), which is a measure of how much energy originating
from surface i is incident on surface j. By using the reciprocity relationship, Eq. (14) can be re-written as

Gi =
N

∑
j=1

FijJj (15)

which holds for the IR and nonIR spectral groups.
In problems where a partial enclosure is considered, each surface could potentially have a view to the “space”

outside the enclosure, and therefore an additional contribution to the incident radiation. For a given surface i, this
contribution is accounted for through a view factor to space Fi,space and a corresponding farfield temperature T∞
and/or a farfield non-IR flux qnonIR∞ . The IR incident radiation term can be modified to account for the IR farfield
source radiation as follows

GIRi =
N

∑
j=1

FijJ
IR
j + Fi,spaceσT 4

∞ (16)

Similarly, the nonIR incident radiation, accounting for the farfield flux contribution, is now

GnonIRi =
N

∑
j=1

FijJ
nonIR
j + Fi,spaceqnonIR∞ (17)

and the nonIR radiosity from a face is given by

JnonIRi = ρIRi GnonIRi (18)
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where the only driving potential for the exchange of nonIR energy within the enclosure originates from the farfield
flux contribution.

In order to solve for the desired net radiative flux from a face, qi, the temperature at each face in the enclosure must
be known either explicitly, or implicitly by solving for temperature as part of a solution of the radiative exchange. In
CHAR, the temperature field is lagged one time step, and therefore the temperatures from the previous time step are
used to solve for the radiative exchange at the current time step. With a known temperature at each face, the challenge
then becomes to solve for the incident radiation and the radiosity at each face, from (16) and (17). Two approaches
implemented in CHAR to solve for this system of equations are presented in the subsequent sections.

Within CHAR, the enclosure radiation boundary condition is cast in the same form as a typical reradiation flux,
given by

qrerad = σε (T 4
w − T 4

∞) (19)

where ε is the emissivity of the solid surface. However, to incorporate the effects of reradiating faces, T∞ is replaced
by Teq , resulting in

qrerad = σε (T 4
w − T 4

eq) (20)

The radiation exchange is computed from the temperature of the visible participating faces using the methods described
in the following sections. By recasting (11) into the same form as (20), and assuming αIRi = εi as stated by Kirchoff’s
law for a body in thermal equilibrium,

qrerad = σεi (T 4
w −

1

σ
GIRi − α

nonIR
i

εiσ
GnonIRi ) (21)

where the equivalent farfield temperature is given by

T 4
eq =

1

σ
GIRi + α

nonIR
i

εiσ
GnonIRi (22)

The Teq for each participating boundary face is computed at the beginning of each time step. Accepting the
boundary condition to be explicit in Teq permits the FEM implementation of this term to be identical to that of CHAR’s
reradiation boundary condition. Prior to the assembly of the FEM matrix, the full matrix of view factors is computed.
Only boundary faces that are specified as having enclosure radiation are currently considered to participate in radiation
exchange.

A. Radiosity Matrix Equation Approach

Substituting (16) into (12), and rearranging, the system of equations can be re-cast in matrix form as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ρIR1 F11 −ρIR1 F12 ⋯ −ρIR1 F1N

−ρIR2 F21 1 − ρIR2 F22 ⋯ −ρIR2 F2N

⋮ ⋮ ⋱ ⋮
−ρIRN FN1 1 − ρIRN FN2 ⋯ 1 − ρIRN FNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JIR1

JIR2

⋮
JIRN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1σT
4
1 + ρIR1 F1,spaceσT

4
∞

ε2σT
4
2 + ρIR2 F2,spaceσT

4
∞

⋮
εNσT

4
N + ρIRN FN,spaceσT

4
∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Solving for the radiosities, the incident radiation at each face can then be computed using (16). Similarly, the
nonIR radiosities can be found by substituting (17) into (18) and recasting in a similar fashion,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ρnonIR1 F11 −ρnonIR1 F12 ⋯ −ρnonIR1 F1N

−ρnonIR2 F21 1 − ρnonIR2 F22 ⋯ −ρnonIR2 F2N

⋮ ⋮ ⋱ ⋮
−ρnonIRN FN1 1 − ρnonIRN FN2 ⋯ 1 − ρnonIRN FNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JnonIR1

JnonIR2

⋮
JnonIRN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρnonIR1 F1,spaceq
nonIR
∞

ρnonIR2 F2,spaceq
nonIR
∞

⋮
ρnonIRN FN,spaceq

nonIR
∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Currently, CHAR uses the SuperLU Dist package through PETSc to solve each matrix system by using a parallel
direct solve. Since the problem typically only involves faces in the boundary where the enclosure radiation is being
considered, the size of the matrix is manageable for most problems. Also, the direct solver results in the most accurate
and robust solution to these matrix systems. However, options to allow the user to select an iterative solver (such as
GMRES, conjugate gradient method, etc.) will be implemented in the near future to allow for more flexibility.
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B. Sequential Reflections Approach

An alternate iterative approach has been implemented in CHAR to directly solve for the incident radiation. Substituting
the IR radiosity ((12)) into the incident IR radiation term ((16)) a few times yields:

GIRi = Fi,spaceσT 4
∞ +∑

j

FijJ
IR
j

GIRi = Fi,spaceσT 4
∞ +∑

j

Fij (Ej + ρIRj GIRj )

GIRi = Fi,spaceσT 4
∞ +∑

j

FijEj +∑
j

Fijρ
IR
j (∑

k

FjkJ
IR
k )

GIRi = Fi,spaceσT 4
∞ +∑

j

FijEj +∑
j

Fijρ
IR
j ∑

k

Fjk (Ek + ρIRk GIRk )

GIRi = Fi,spaceσT 4
∞ +∑

j

FijEj +∑
j

Fijρ
IR
j ∑

k

FjkEk +∑
j

Fijρ
IR
j ∑

k

Fjkρ
IR
k (∑

m

FkmJ
IR
m )

GIRi = Fi,spaceσT 4
∞ +∑

j

FijEj +∑
j

Fijρ
IR
j ∑

k

FjkEk +∑
j

Fijρ
IR
j ∑

k

Fjkρ
IR
k ∑

m

Fkm (Em + ρIRm GIRm )

incident radiation
¬
GIRi =

farfield contribution
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Fi,spaceσT

4
∞ +

direct emission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j

FijEj +

first reflection
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j

Fijρ
IR
j ∑

k

FjkEk +

subsequent reflections
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j

Fijρ
IR
j ∑

k

Fjkρ
IR
k ∑

m

Fkm (Em + ρIRm GIRm )

(25)
It would be desirable to develop an iterative method to compute the total incident radiation including reflections.

This is done by sequentially evaluating terms in this expression (where the number of terms is the number of reflections
a particular emitted photon is allowed to experience before being ignored). With a few observations of the expression,
this is feasible. Notice that each term contains something similar to

G0,IR
e,i =∑

j

FijEj , (26)

which represents the source of the energy in the IR radiation field. This can be evaluated without regard for any
reflections. Substituting this in, the overall expression reduces to:

GIRi = G0,IR
e,i +∑

j

Fijρ
IR
j G0,IR

e,j +∑
j

Fijρ
IR
j ∑

k

Fjkρ
IR
k G0,IR

e,k + remainder. (27)

The amount of incident radiation from the first reflection is

R0,IR
i =∑

j

Fijρ
IR
j G0,IR

e,j (28)

and subsequent reflections are given by
Rn,IRi =∑

j

FijρjR
(n−1),IR
j . (29)

Substituting in for the overall incident radiation:

GIRi = G0,IR
e,i +R0,IR

i +∑
j

Fijρ
IR
j R0,IR

j + remainder (30)

GIRi = G0,IR
e,i +

N

∑
n=0

Rn,IRi . (31)

Because ρ is always less than 1, the values forRn,IRi will converge to zero. From this, it is apparent that by making
multiple passes through the communicating faces, the total incident radiation for a given number of reflections can be
built up based on surface temperatures and the incident radiation from the previous reflection number, and that this
value will converge as more reflections are taken into account. A similar approach is used for the nonIR reflections,
with a farfield contribution due to q∞ instead of T∞.
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IV. Radiation View Factors

The geometric view factor, sometimes also known as a configuration factor, is purely a geometric quantity that
describes the fraction of energy leaving a finite area A1 being intercepted by area A2. Mathematically, the exact
definition of the view factor from element face i to element face j is given by

Fij =
1

Ai
∫
Ai
∫
Aj

cos θi cos θj

πS2
dAjdAi, (32)

where the terms are defined in Figure 1. Clearly, any view factor value should be between 0 and 1. In a complete
enclosure, the sum of all the view factors from a given face i should add up to 1. That is,

n

∑
j=1

Fij = 1 (33)

dAi

dAj

S

ν̂i

ν̂j

θi

θj

Aj

Ai

T i

T j

Figure 1. Definition of terms used in computing view factor from face i to face j, Fij .

Similarly, in a partial enclosure, the sum of all the view factors from i to every face j, and the view factor that i
has to the space external to the enclosure, must also add up to 1. In addition, the well-known reciprocity relationship

AiFij = AjFji (34)

between two faces (i and j) must also be satisfied.
Several different approaches to compute view factors have been developed and can be found in the literature

[References??]. For simple geometries, analytical formulas for view factors can be derived. Unfortunately, such
closed form solutions do not exist for most practical problems of interest, and therefore, it is desired to have a robust
and accurate manner to compute view factors for complex geometries. In addition, computational cost can also be an
important consideration for problems with many faces, and/or problems in which view factors must be recomputed
often. Two different methods for computing view factors have been implemented in CHAR to date, and they are
presented in the following sections.

A. Double Area Integral Method

The first method implemented to calculate view factors is to numerically integrate Eq. (32) by dividing participating
element faces into K sub-faces, where K is a user input. The integrals can now be expressed as summations.

Fij =
1

Ai

K

∑
l=1

K

∑
m=1

cos (θi)l cos (θj)m
πS2

l→m

(Aj)m (Ai)l blm (35)
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where the angles and areas are defined with respect to the sub-faces. The outer “l” summation is over sub-faces on
element face i, and the inner “m” summation is over sub-faces on element face j. Consequently, the total areas of the
element faces are given by

Ai =
K

∑
l=1

(Ai)l (36)

and

Aj =
K

∑
m=1

(Aj)m (37)

In CHAR, the user can optionally specify that a search be performed to verify that theRl→m paths are not obstructed
by any other face, also known as “shadowing”. If an obstruction is found, the term blm is set to 0, and the view factor
contribution from those sub-faces is therefore 0. Similarly, if two faces have normals that do not point toward each
other, blm is also set to 0. If the view factors for face i do not sum to 1.0, the difference is made up by a view factor to
a ‘far-field’ face with temperature T∞ and/or a nonIR radiation source flux q∞.

This method attempts to account for partially shadowed faces by checking the path between each possible pair
of nodes between two sub-faces. However, the accuracy of the view factor between two partially shadowed faces
increases as more sub-faces are used. The double area integral approach is most accurate when computing view
factors for small faces which are far apart. As pointed out in [3], the method is not as accurate when considering two
faces which share an edge, or faces which are close to each other. Still, this method can result in fast and accurate
computation of view factors in CHAR when used appropriately.

Finally, the double area integral approach naturally respect the reciprocity relationship given by (34). However,
integration errors introduced by the simplification of the view factor definition given by (35) can result in violation of
the additive property given by (33).

B. Monte Carlo Ray Tracing Method

The second method available to compute view factors is a Monte Carlo ray-tracing algorithm. This approach has been
studied extensively for computing view factors and for computer graphics applications. To compute view factors, a
large number of statistical experiments are carried out from any given face by randomly selecting the origin of a ray
(or photon). Once a total number of rays N are casted from an element face i, the view factor to any other face j is
given by

Fij =
m

N
(38)

where m is the total number of rays emitted from face i which intersected face j.
CHAR supports view factor computation on quadrilaterial or triangular faces in 3D problems. However, for the

purposes of selecting a random origin of each ray to be emitted, quadrilaterals are split into 2 triangular faces by
randomly selecting the diagonal to split along. Then, the origin of the ray to be emitted on the selected triangular face
is given by [4]

Porigin = (1 −√
r1)n1 +

√
r1(1 − r2)n2 +

√
r1r2n3 (39)

where n1, n2 and n3 are the vertices of the selected triangle, and r1 and r2 are two random numbers generated.
To initialize the pseudo-random number generator used in CHAR, each processor gets assigned a unique seed

according to [5]
seed = ∣((t × 181)((pid − 83) × 359))%104729∣ (40)

where t is the CPU time in seconds obtained with the C++ time() command, and pid is the processor’s ID. This seeding
scheme results in one seed collision every 10,000 job submissions.

By treating each face as a diffuse emitter, each ray emission direction is also randomly selected according to a
cosine probability distribution as governed by Lambert’s law. In 3D geometries, where the radiating faces are 2D face
elements, the warping function used to generate the direction of the ray emitted is given by [6]

(χ,ψ) = (cos−1(
√

1 − r3),2πr4) (41)

where χ and ψ represent the polar angle with respect to the face normal, and the azimuthal angle around the normal
of the element, respectively. In 2D problems, where the radiating face elements are edges, the angle of the ray relative
to the face normal is given by,

χ = sin−1(r5) (42)
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where r3, r4 and r5 are uniformly distributed random numbers between [0,1].
The Monte Carlo approach is especially powerful in dealing with complex geometries as it implicitly takes into

account shadowing and partial shadowing. However, due to the non-deterministic nature of this approach, the analyst
must ensure sufficiently many rays are cast from each face to correctly resolve the view factors. It is also well known
that according to probability theory, the error in this Monte Carlo approach is inversely proportional to the square root
of number of rays emitted for a given confidence interval and view factor,

E =
√

2erf−1(C)
¿
ÁÁÀ1 − Fij

NFij
, (43)

where C is the confidence level, and N is the number of rays emitted. Therefore, to decrease the error by a factor of 2,
the number of rays emitted must be increased by a factor of 4. This highlights the large computational expense which
typically comes with this Monte Carlo approach to compute view factors. Still, (43) provides a way to estimate the
number of rays required to resolve a given view factor down to a desired level of error. CHAR provides the user an
option to use (43) to determine the number of rays to be emitted by specifying a confidence level, a maximum error,
and a minimum view factor to resolve.

This monte carlo approach for computing view factors inherently respects the view factor sum property given by
(33). However, due to its stochastic nature, it does not satisfy the reciprocity stated by (34). Approaches to smooth
view factors to better satisfy both of these properties have been developed in the literature. For example, Daun,
Morton and Howell [7] show a smoothing approach using a constrained maximum likelihood estimation algorithm.
However, no view factor smoothing has been implemented in CHAR at this time. Currently, CHAR supports view
factor computation in 2D and 3D problems using this Monte Carlo approach.

V. Efficient Octree Traversal

To alleviate the computational cost of the many ray-intersections and searches involved with the Monte Carlo view
factor approach, an octree structure and efficient octree traversal algorithm have been implemented in CHAR. In an
“exhaustive search” implementation, the entire list of boundary faces must be searched, which results in enormous
computational expense. This section presents a very efficient alternative based on quad- and octrees that reduces the
runtime significantly, and makes running of problems with a large number of radiating faces and/or moving mesh
feasible. The section is composed of three groups of subsections:

1. Building the Tree (subsections A-D)

An octree works by recursively partitioning a volume of three-space into successively smaller and nested regions
and (“boxes”) associating a set of data with each of those subregions. It is the three-dimensional analog to a
binary search tree. In this application, the data is a collection of element faces. We place a face inside a box if
the face intersects the box nontrivially (i.e., non-zero volume). It is possible (and likely) for a face to belong to
more than one box. The text of these sections focuses on the development of an efficient intersection test based
on the separating axis theorem from convex analysis.

2. The Traversal Algorithm (subsections (E-J)

A ray is shot from one of the faces. The next step is to determine which of the tree boxes the ray pieces along its
forward trajectory and search only the contents of those boxes for the closest (if any) face of intersection. The
tree is used to identify those boxes and traversal follows a top-down approach: every face is part of the largest
box that bounds the entire domain. From there, we determine to which of the children (subboxes) the ray enters.
If a child box has no children of its own, then we include its contents among what we will eventually search.
Otherwise, the process continues recursively and treats each child box as though it were the mother box. These
sections detail the means by which we do this, a clever scheme based on entry and exit times due to [8].

3. Performance (subsection K)

We conclude by presenting several viewfactor-only problems that highlight the immense gains realized by ul-
tilization of an octree search over an exhaustive search. A single 2D problem shows that a quadtree does yield
notheworthy, if not outstanding, speed-ups of 2-3x. For 3D problems, the performance gain increases with the
size of the problem. For modest problems, we see speed-up of 5-10x. For a medium size problems, the factor
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reaches up over 20x. Finally, for the largest problems, the speedometer cruises up over a whopping 100x. Such
impressive speed increases reduce hardware requirements and allow local execution of problems that would
otherwise require massively-parallel network clusters to complete in an acceptable time period.

A. The Separating Axis Test (SAT)

The following fundamental result from convex analysis is of the utmost use to use:

LetA ⊂ Rd be closed andK ⊂ Rd be compact with both convex. ThenA∩K = ∅ if and only if there exists
a hyperplane P = {x ∈ Rd ∶ x ⋅ p = c} for some c ∈ R and p ∈ Rd/{0} such that either

1. p ⋅ a > c for all p ∈ P, a ∈ A and p ⋅ k < c for all p ∈ P, k ∈ K

2. p ⋅ a < c for all p ∈ P, a ∈ A and p ⋅ k > c for all p ∈ P, k ∈ K

In plain language, A is on one side of A and K is on the other and there is a gap between them. Such a P
is called a separating hyperplane.

Theorem 1 (Hyperplane Separation Theorem)

Rather than attempt to compute a point of intersection directly—we only care if there is intersection, not where—
we may use the Hyperplane Separation Theorem to check for the existence of a separating hyperplane. If none can be
found, then we may conclude intersection. The test for the hyperplane is expensive, so it is fortunate that the existence
of a separating hyperplane is equivalent to the existence of a separating axis:

Let P ∈ Rd be a separating hyperplane. ξ ⊂ Rd is a separating axis if ξ ⊥ P .

Definition 1 (Separating Axis)

Because a hyperplane is always of dimension d−1, dimξ = 1 whenever ξ is a separating axis; we may identify any
separating axis with a spanning element in Rd. It is so named because the orthogonal projections of the basis vectors
of A and K onto ξ will result in non-overlapping intervals. This leads to an obvious result:

LetA ⊂ Rd be closed andK ⊂ Rd be compact with both convex. Then there exists a separating hyperplane
for A and K if and only if there exists a separating axis between them.

Theorem 2

It is worth noting that some of the objects we are interested in testing for intersection—boxes and segments in
particular—are bounded with a centroid about which they are symmetric. We can therefore devise the following
simple and efficient check, dubbed the separating axis test (SAT), for a candidate ξ:

1. Let c ∈ K and c′ ∈ K′ be the centroids of K and K′.

2. Let Πξ(x) denote the projection of x ∈ Rd onto ξ. Define

` ≜ max
0≤i≤N̄−1

∣Πξ(ni − c)∣ `′ ≜ max
0≤i≤N̄−1

∣Πξ(n′i − c′)∣ L ≜ ∣Πξ(c − c′)∣

3. If ` + `′ < L, then ξ is a separating axis.

Algorithm 1 (Separating Axis Test for Symmetric Objects)
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In plain language, the symmetric SAT computes the maximum length of the projections of the centroid–node radii
onto ξ. The sum of these values is then compared to the distance between the projections of the centroids onto ξ. If
` + `′ < L, then the sets must be disjoint. The process is illustrated in Figure 2 below.

K

K′
P

ξ

`

`
′

L

c

c′

n0−c

n′0−c
′

(a)

K

K′

ξ

`

`
′

L

ck

n0−c

n′0−c
′

(b)
Figure 2. Separating Axis Test in Action. In (a), the objects K and K′ are separated by the hyperplane P (not
unique). Here, we see that the intervals [Πξ(c),Πξ(n0)] (yellow) and [Πξ(n′0),Πξ(c′)] (blue) are disjoint; this
is equivalent to ` + `′ < L. If K and K′ touch at a single point, then ` + `′ = L. In (b), we have intersection so ξ is
not a separating axis. We see that the overlap causes ` + `′ > L.

When the objects are not both symmetric, the picture changes: we cannot project node–centroid radii because the
object’s projection will no longer be symmetric about the projected centroid. Instead, we must project each node of
the object onto ξ and then compute the maximum distance among these projections. In theory, we must also project
the convex hull onto ξ, although in practice we can avoid this.

K

K′

P

ξ

`

`
′

L

(a)

K

K′

ξ

`

`
′

L

(b)
Figure 3. Separating Axis Test in Action, Non-Symmetric Objects. Here, ` is the length of the projection of K
onto ξ, similarly for `′. The convex hull of K and K′ is shown in gray; the length of its projection onto ξ is L.
In (a), we see a separating hyperplane P because ` + `′ < L. In (b), we have intersection so ξ is not a separating
axis. We see that the projections overlap and cause ` + `′ > L.

In the test for symmetric objects, the point Πξ(c) is implicitly chosen to be the zero coordinate on the ξ axis.
There is no such obvious candidate for the non-symmetric test. However, this does not matter: we need only compute
the largest distance between pairs of projected nodes. Because maxx∈I(a + x) = a + maxx∈I x, the zero point will
ultimately subtract out and is accordingly not relevant. Because the objects are convex, the extreme points of the
convex hull are nodes in one of the objects; we can bypass computing the convex hull by locating the maximum and
minimum points among each subset of projections.
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Instead, we can compute the lengths of the projections directly by projecting each node onto ξ and then finding
the length of the interval formed by the collection. Algorithm 2 below explicates the technique:

1. Let {ni}
N̄−1

i=0
and {n′i}

N̄ ′−1

i=0
be the nodes of K and K′, respectively. Compute

pi ≜ ∣Πξ(ni)∣ p′i ≜ ∣Πξ(n′i)∣

2. Compute the lengths of the intervals of the projection in ξ coordinate space:

` ≜ max
0≤i≤N̄

pi − min
0≤i≤N̄

pi

`′ ≜ max
0≤i≤N̄

p′i − min
0≤i≤N̄

p′i

L ≜ max{ max
0≤i≤N̄

pi, max
0≤i≤N̄

p′i} −min{ min
0≤i≤N̄

pi, min
0≤i≤N̄

p′i}

3. If ` + `′ < L, then ξ is a separating axis.

Algorithm 2 (Separating Axis Test for Non-Symmetric Objects)

There are six ways in which intersection can occur: face–face, face–edge, face–node, edge–edge, edge–node, or
node–node. While covered by other tests (because a node is on a face or edge), node intersections are handled first for
a quick check: if any nodes are contained in the box, then we can skip the remaining checks.

While it is easy for a human to draw a separating hyperplane by inspection, automating the process requires
identifying a (preferably small) finite number of possible separating axes. An obvious set of candidates are given by
the faces of the objects K and K′. By continuity of the distance metric ρ ∶ Rd × Rd → R+, if ρ(K,K′) > 0, then we
can perturb one of K or K′ by ε≪ 1 and maintain a positive distance between the perturbed set and the original other.
The separating axes corresponding to the faces are the face normals.

In 2D, the collection of face normals is sufficient; in 3D, however, testing only face normals can result in false
detection. The figure below displays the potential for failure.

K K′

P

Figure 4. Insufficiency of Face Normals. Here, the face normal of K lies in the same plane as K′ and the face
normal of K′ lies in the same plane as K. Hence, neither is a separating axis for these objects. The separating
hyperplane P is spanned by one edge from each of K and K′, indicated in red.

While the figure above is drawn for two quadrilaterals, it is precisely the situation that can be encountered in edge–
edge intersections. If we tested only face normals for the above figure, we’d find no separating axis between them and
would erroneously conclude intersection. In this case, the hyperplane is spanned by two edges. Since the separating
axis is orthogonal to the hyperplane, a third class of candidate separating axes is generated by the set of cross products
of each edge from one object with each edge from the other.

To summarize the above paragraphs, the following are the candidate separating axes:
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1. The face normals of K.

2. The face normals of K′.
3. The cross product of an edge from K with an edge from K′ (all possible combinations, 3D only).

The above list seemingly forms a large set of possibilities to test. Because the SAT considers only projections, the
number of tests required can be greatly reduced by discarding parallel axes. For example, for a triangle and a bounding
box, a naı̈ve compilation of the above list results in twenty-five axes to test: six from normals of the box, one from
the triangle normal, and eighteen from edges. However, normals from opposing faces of the box are (anti)parallel and
only three edges have unique direction. This analysis reduces the number of required tests to just thirteen (four from
normals, nine from pairing edges).

The discussion of this section is based on the code, algorithms, and explanations given in [9], although additional
detail has been provided here and the results have been specialized to the specific cases and geometries relevant to
viewfactor calculations.

B. Executing the SAT in 2D

In 2D, faces and edges coincide. Per the preceding section, the candidates for separating axes are the normals from
the sides of the box B and normal from the “face.” Because tree boxes are always axis-aligned, the normals are the
coordinate axes ξ1 = (1,0)T and ξ2 = (0,1)T . The edge vector is given by the directed segment from n0 to n1, or

w = 1

2
(n1 − n0)

The factor of one-half is merely for convenience. The third candidate is the perpendicular to w, or ξ3 = (−e(1), e(0))T .
Because the box and segment are symmetric, we use Algorithm 1. Letting K = B, where B denotes a box,

d ≜ n0 − c = 1

2
(xmax − xmin)

which is half of the box diagonal. The final piece is then the centroid-to-centroid vector

m ≜ c − c′ = 1

2
(n0 + n1) − xmid

where xmid = 1
2
(xmax + xmin) is the centroid of the box. The projection operator Π onto ξ is given by

Πξ(x) =
ξ ⋅ x
∣ξ∣ ξ (44)

When the norm of the projections is taken, the ∣ξ∣ will cancel. Based on the above, we have

Axis ξ ` `′ L

1 (1,0)T ∣d(0) ∣ ∣w(0) ∣ ∣m(0)∣

2 (1,0)T ∣d(1) ∣ ∣w(1) ∣ ∣m(1)∣

3 ( −w(1),w(0))T ∣d(0)w(1) ∣ ∣d(1)w(0) ∣ ∣w(0)m(1) −w(1)m(0) ∣

Table 2. Vital Information for SAT (2D). This table contains all of the quantities needed to formulate an algo-
rithm for intersection of faces and boxes in 2D.

Thanks to the definition of e, the quantities `, `′, and L each contain a factor of 1
2

that may be removed. In addition,
because d(i) > 0 for every i, we remove the absolute values from these quantities. With these considerations and Table
2, we may present a streamlined 2D insertion algorithm:
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Let n0 and n1 be the nodes that comprise the edge (face) to be inserted.

1. If either n0 ∈ B or n1 ∈ B, add the face to the box and exit.

2. Otherwise, compute the following quantities:

w ≜ n1 − n0 Edge vector
d ≜ xmax − xmin Box diagonal
m ≜ n0 + n1 − xmax − xmin Segment midpoint to box centroid

3. Axis Test #1: if ∣m(0) ∣ > d(0) + ∣w(0) ∣, exit.

4. Axis Test #2: if ∣m(1) ∣ > d(1) + ∣w(1) ∣, exit.

5. Axis Test #3: if ∣w(0)m(1) −w(1)m(0) ∣ > ∣d(0)w(1) ∣ + ∣d(1)w(0) ∣ exit.

6. Reaching this point means no separating axis exists: add the face to the box.

Algorithm 3 (Insertion in 2D)

C. Executing the SAT in 3D

A face F in 3D can be either a triangle or a quadrilateral. Let N̄ be the number of nodes on the face and {ni}
N̄−1

i=0
be

the set of nodes; for a triangle, N̄ = 3 and for a quadrilateral, N̄ = 4. In general, F is not symmetric, so we must use
Algorithm 2. Fortunately, the box is symmetric, so we can compute ` directly via Algorithm 1.

Per Algorithm 2, letting K = B, we must compute

` = max
i

(vi ⋅ ξ) − min
i

(vi ⋅ ξ)

The nodes vi of the box have jth component either x(j)max or x(j)min. To maximize the first term in `, we should choose
the node vi such that

v
(j)
i =

⎧⎪⎪⎨⎪⎪⎩

x
(j)
max if ξ(j) ≥ 0

x
(j)
min if ξ(j) < 0

To minimize the second term, we should choose the node ni such that

v
(j)
i =

⎧⎪⎪⎨⎪⎪⎩

x
(j)
min if ξ(j) ≥ 0

x
(j)
max if ξ(j) < 0

As an example, suppose that the signs of ξ are +,−,−. Then per the above,

max
i

(vi ⋅ ξ) = x(0)max ∣ξ(0)∣ − x(0)min ∣ξ(1)∣ −x(2)min ∣ξ(2)∣ (45)

−min
i

(vi ⋅ ξ) = x(0)min ∣ξ(0)∣ − x(1)max ∣ξ(1)∣−x(2)max ∣ξ(2)∣ (46)

While the above combine to give a nice expression involving the diagonal d = xmax − xmin, it is preferable to leave
them separate because both quantities are needed individually to compute L.

The face normals for the box are again the coordinate axes: ξ1 = (1,0,0)T , ξ2 = (0,1,0)T , ξ3 = (0,0,1)T . We
may compute the necessary dot products for `, `, and L explicitly for these axes with little effort. Let ξ4 = ν be the
normal of F . We can appeal to Eq. (45) and Eq. (46) for `, but because we know nothing about the components of ν,
there is nothing we can do to simplify ν ⋅ ni. This gives the table
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Axis ξ ` `′ L

1 (1,0,0)T d(0) max n
(0)
i −minn

(0)
i max{x(0)max,maxn

(0)
i } −min{x(0)min,minn

(0)
i }

2 (0,1,0)T d(1) max n
(1)
i −minn

(1)
i max{x(1)max,maxn

(1)
i } −min{x(1)min,minn

(1)
i }

3 (0,0,1)T d(2) max n
(2)
i −minn

(2)
i max{x(2)max,maxn

(2)
i } −min{x(2)min,minn

(2)
i }

4 ν M −m max ν ⋅ ni −min ν ⋅ ni max{M,maxν ⋅ ni} −min{m,minν ⋅ ni}

Table 3. Vital Information for SAT (3D), Part I. This table contains all of the quantities for testing separating
axes corresponding to face normals from the box and face in 3D.

Appearing in the final row of Table 3, the values M and m are defined as

M ≜ ν(0) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(0)
max if ν(0) ≥ 0

x
(0)
min if ν(0) < 0

+ ν(1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(1)
max if ν(1) ≥ 0

x
(1)
min if ν(1) < 0

+ ν(2) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(2)
max if ν(2) ≥ 0

x
(2)
min if ν(2) < 0

(47)

m ≜ ν(0) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(0)
min if ν(0) ≥ 0

x
(0)
max if ν(0) < 0

+ ν(1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(1)
min if ν(1) ≥ 0

x
(1)
max if ν(1) < 0

+ ν(2) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(2)
min if ν(2) ≥ 0

x
(2)
max if ν(2) < 0

(48)

and are the results of explicitly computing maxi (ν ⋅ vi) and mini (ν ⋅ vi), respectively, as in Eq. (45) and Eq. (46).

In 2D, no edge–edge intersections must be tested and normals alone suffice as candidate separating axes. We are
not so fortunate in 3D. An edge fi, 0 ≤ i ≤ N̄ − 1, of F is given in terms of its nodes:

fi ≜ ni+1 − ni

The i + 1 should be interpreted in terms of mod N + 1 so that the index does not go out of range when i = N̄ − 1; this
ensures that the final edge nN̄−1 → n0 is included. The edges of the box are again the coordinate axes: b1 = (1,0,0)T ,
and b2 = (0,1,0)T , and b3 = (0,0,1)T . The candidate axes generated from an edge fi are the cross products with
each of the bi′ , which we may compute explicitly:

ξ5,i = b1 × fi = (0,−f (2)i , f
(1)
i )

T

= (0, n
(2)
i − n(2)i+1, n

(1)
i+1 − n

(1)
i )

T

ξ6,i = b2 × fi = (f (2)i ,0,−f (0)i )
T

= (n(2)i+1 − n
(2)
i ,0, n

(0)
i − n(0)i+1)

T

ξ7,i = b3 × fi = ( − f (1)i , f
(0)
i ,0)

T

= (n(1)i − n(1)i+1, n
(0)
i+1 − n

(0)
i ,0)

T

(49)

For purposes of derivation, we may suppose that N̄ = 4; if N̄ = 3, the only other valid option, then expressions
involving the final node n3 may be ignored. Using the rightmost side of the above, we can reduce the computational
burden required to find `′. We compute each of the inner products:

α0,i ≜ n0 ⋅ ξ5,i = n
(1)
0 (n(2)i − n(2)i+1) + n

(2)
0 (n(1)i+1 − n

(1)
i )

α1,i ≜ n1 ⋅ ξ5,i = n
(1)
1 (n(2)i − n(2)i+1) + n

(2)
1 (n(1)i+1 − n

(1)
i )

α2,i ≜ n2 ⋅ ξ5,i = n
(1)
2 (n(2)i − n(2)i+1) + n

(2)
2 (n(1)i+1 − n

(1)
i )

α3,i ≜ n3 ⋅ ξ5,i = n
(1)
3 (n(2)i − n(2)i+1) + n

(2)
3 (n(1)i+1 − n

(1)
i )

(50)

β0,i ≜ n0 ⋅ ξ6,i = n
(0)
0 (n(2)i+1 − n

(2)
i ) + n(2)0 (n(0)i − n(0)i+1)

β1,i ≜ n1 ⋅ ξ6,i = n
(0)
1 (n(2)i+1 − n

(2)
i ) + n(2)1 (n(0)i − n(0)i+1)

β2,i ≜ n2 ⋅ ξ6,i = n
(0)
2 (n(2)i+1 − n

(2)
i ) + n(2)2 (n(0)i − n(0)i+1)

β3,i ≜ n3 ⋅ ξ6,i = n
(0)
3 (n(2)i+1 − n

(2)
i ) + n(2)3 (n(0)i − n(0)i+1)

(51)
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γ0,i ≜ n0 ⋅ ξ6,i = n
(0)
0 (n(1)i − n(1)i+1) + n

(1)
0 (n(0)i+1 − n

(0)
i )

γ1,i ≜ n1 ⋅ ξ6,i = n
(0)
1 (n(1)i − n(1)i+1) + n

(1)
1 (n(0)i+1 − n

(0)
i )

γ2,i ≜ n2 ⋅ ξ6,i = n
(0)
2 (n(1)i − n(1)i+1) + n

(1)
2 (n(0)i+1 − n

(0)
i )

γ3,i ≜ n3 ⋅ ξ6,i = n
(0)
3 (n(1)i − n(1)i+1) + n

(1)
3 (n(0)i+1 − n

(0)
i )

(52)

If we examine each of the above and fill in specific values of i, we learn that

α0,0 = α1,0 β0,0 = β1,0 γ0,0 = γ1,0

α1,1 = α2,1 β1,1 = β2,1 γ1,1 = γ2,1

α2,2 = α3,2 β2,2 = β3,2 γ2,2 = γ3,2

α3,3 = α0,3 β3,3 = β0,3 γ3,3 = γ0,3

Therefore, we can eliminate one value from each maximum and minimum that define rk′ and ρ, providing a modest
boost to efficiency. Summarizing in a manner similar to Table 3, we have for each 0 ≤ i ≤ N − 1

Axis ξ ` `′ L

5, i (0,−f (2)i , f
(1)
i )T M5,i −m5,i max

j≠i
αj,i −min

j≠i
αj,i max{M5,i,max

j≠i
αj,i} −min{m5,i,min

j≠i
αj,i}

6, i (f (2)i ,0,−f (0)i )T M6,i −m6,i max
j≠i

βj,i −min
j≠i

βj,i max{M6,i,max
j≠i

βj,i} −min{m6,i,min
j≠i

βj,i}

7, i ( − f (1)i , f
(0)
i ,0)T M7,i −m7,i max

j≠i
γj,i −min

j≠i
γj,i max{M7,i,max

j≠i
γj,i} −min{m7,i,min

j≠i
γj,i}

Table 4. Vital Information for SAT (3D), Part II. This table contains all of the quantities for testing separating
axes corresponding to edge–edge cross products in 3D.

in which we have introduced the quantities Mj,i ≜ maxk (ξj,i ⋅ vk) and mj,i ≜ mink (ξj,i ⋅ vk). Using the axis
definitions Eq. (49) and reasoning similar to what produced Eq. (45) and Eq. (46), we can compute these values
explicitly:

M5,i = (n(2)i − n(2)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(1)
max if n(2)i ≥ n(2)i+1

x
(1)
min if n(2)i < n(2)i+1

+ (n(1)i+1 − n
(1)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(2)
max if n(1)i+1 ≥ n

(1)
i

x
(2)
min if n(1)i+1 < n

(1)
i

(53)

M6,i = (n(2)i+1 − n
(2)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(0)
max if n(2)i+1 ≥ n

(2)
i

x
(0)
min if n(2)i+1 < n

(2)
i

+ (n(0)i − n(0)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(2)
max if n(0)i ≥ n(0)i+1

x
(2)
min if n(0)i < n(0)i+1

(54)

M7,i = (n(1)i − n(1)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(0)
max if n(1)i ≥ n(1)i+1

x
(0)
min if n(1)i < n(1)i+1

+ (n(0)i+1 − n
(0)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(2)
max if n(0)i+1 ≥ n

(0)
i

x
(2)
min if n(0)i+1 < n

(0)
i

(55)

m5,i = (n(2)i − n(2)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(1)
min if n(2)i ≥ n(2)i+1

x
(1)
max if n(2)i < n(2)i+1

+ (n(1)i+1 − n
(1)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(2)
min if n(1)i+1 ≥ n

(1)
i

x
(2)
max if n(1)i+1 < n

(1)
i

(56)

m6,i = (n(2)i+1 − n
(2)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(0)
min if n(2)i+1 ≥ n

(2)
i

x
(0)
max if n(2)i+1 < n

(2)
i

+ (n(0)i − n(0)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(2)
min if n(0)i ≥ n(0)i+1

x
(2)
max if n(0)i < n(0)i+1

(57)

m7,i = (n(1)i − n(1)i+1) ⋅
⎧⎪⎪⎨⎪⎪⎩

x
(0)
min if n(1)i ≥ n(1)i+1

x
(0)
max if n(1)i < n(1)i+1

+ (n(0)i+1 − n
(0)
i ) ⋅

⎧⎪⎪⎨⎪⎪⎩

x
(2)
min if n(0)i+1 ≥ n

(0)
i

x
(2)
max if n(0)i+1 < n

(0)
i

(58)

We conclude by presenting the complete algorithm for inserting of faces into boxes in 3D. The algorithm computes
nothing until it is needed and is designed to maximize the efficiency of early exits.
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Let {ni}
N̄−1

i=0
be the set of nodes on the face F to be inserted.

1. If any ni ∈ B, add the face to the box and exit.

2. Compute the box diagonal d = xmax − xmin.

3. Enter loop to test box face normals as separating axes: for i ∈ {0,1,2},

(L1) Compute Mi = maxj n
(i)
j and mi = minj n

(i)
j .

(L2) Axis Test #(i+1): if max{x(i)max,Mi} −min{x(i)min,mi} > d(i) +Mi −mi, exit.

4. Let ν be the normal of F . Compute M via Eq. (47) and m via Eq. (48). Compute Mν = maxi ν ⋅ni
and mν = mini ν ⋅ ni.5. Axis Test #4: if max{M,Mν} −min{m,mν} >M −m +Mν −mν , exit.

6. Enter loop over edges: for i ∈ {0, . . . , N̄ − 1},

(L′1) For j ∈ {0, . . . , N̄ − 1}/{i}, compute αi,j via Eq. (50).

(L′2) Compute A = max αj,i, a = min αj,i, M5,i via Eq. (53), and m5,i via Eq. (56).

(L′3) Axis Test #(5,i): if max{M5,i,A} −min{m5,i, a} >M5,i −m5,i +A − a + τ , exit.

(L′4) For j ∈ {0, . . . , N̄ − 1}/{i}, compute βi,j via Eq. (51).

(L′5) Compute B = max βj,i, b = min βj,i, M6,i via Eq. (54), and m6,i via Eq. (57).

(L′6) Axis Test #(6,i): if max{M6,i,B} −min{m6,i, b} >M6,i −m6,i +B − b + τ , exit.

(L′7) For j ∈ {0, . . . , N̄ − 1}/{i}, compute γi,j via Eq. (52).

(L′8) Compute G = max γj,i, g = min γj,i, M7,i via Eq. (55), and m7,i via Eq. (58).

(L′9) Axis Test #(7,i): if max{M7,i,G} −min{m7,i, g} >M7,i −m7,i +G − g + τ , exit.

7. Reaching this point means no separating axis exists: add the face to the box.

Algorithm 4 (Insertion in 3D)

The mysterious τ that has suddenly appeared in the edge–edge axes is a small parameter added for numerical
robustness. When an edge fi is aligned with a coordinate axis (or very nearly so), the cross product is zero. Conse-
quently, all projections onto this axis are zero; in perfect arithmetic, the comparison is 0 > 0, which is false. Round-off
error and other imprecisions may spoil this calculation and lead to a false positive.

D. Child Boxes

We add data to a box one piece at a time. When the size of the data associated with a box reaches the maximum
allowed bin size, we refine the box by dividing the box in two along each dimension, yielding four child boxes in 2D
and eight in 3D. The data from the original box is removed and copies distributed to each of the newly-formed child
boxes. A box may have an empty set of children or empty set of data but not both; a box with data is said to be active.

The child boxes are assigned numbers that indicate their position in the data structure that contains them (generally,
a vector or array in the language of implementation). Perhaps the most natural ordering is based on binary
counting: each bit of the child’s number written as a binary string of length d gives whether the corresponding term
in the Cartesian product describing the child’s region of space should be the upper or lower half of the original. For
example, for the fifth child, 5↦ 101 indicates that it is the region

[x(0)mid, x
(0)
max] × [x(1)min, x

(1)
mid] × [x(2)mid, x

(2)
max]

This is, however, not the optimal ordering as far as traversal is concerned. Instead, we use the ordering shown in Figure
5 below. The benefit of doing so will become apparent in the next section.
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x(1)max

x
(1)
min

x
(1)
mid

x
(0)
min x(0)maxx

(0)
mid

v0

v1

v2

v3

2D

x(1)max

x
(1)
min

x
(1)
mid

x
(0)
min x(0)maxx

(0)
mid

x (2)m
in

x (2)m
ax

x (2)mid
v0

v1

v2

v2

v3

v4

v4

v5

v6

v6

v6

v7

v7

3D
Figure 5. Numbering of Child Boxes. The unconventional ordering of the child boxes, due to Revelles, Ureña,
and Lastra [8] will become incredibly convenient in the traversal algorithm.

E. The Traversal Algorithm

The previous section is dedicated to building the tree: all the intersection methods are designed for determining
whether faces belong in a particular box. With that critical matter settled, we can turn our attention to the crux of this
report: speedy ray-box intersection. It is for this purpose we built the tree.

Determining whether a ray pierces a box is, in principle, identical to the logic that determines whether the edge
between two nodes intersects a bounding box. We have developed an algorithm based on the Hyperplane Separation
Theorem. Doing so created a highly robust and efficient method that identifies all possible types of intersections (face-
face, edge-face, edge-edge, and vertex-anything) with minimal effort. However, for ray-face intersections, the SAT is
a poor choice for determining intersection, as it gives no information about the location of intersection; consequently,
every child box must be checked from scratch. As typical applications involve some hundred thousand rays, even a
small gain in the efficiency of the ray-box intersect method can amplify performance significantly.

F. Intersection with Child Boxes

Remember that each box in the tree has exclusively either data (“active”) or children. Once intersection is determined,
if that box is not active, we proceed downward to child boxes. Tree traversal therefore goes:

1. If the ray pierces an active box, return that box’s (non-empty) dataset.

2. Otherwise, determine the child boxes the ray pierces. Return to Step 1 above for each such box.

The recursive nature of traversal motivates a top-down approach based on entry and exit times. In this manner, we
can use knowledge from the previous step to reduce the number of recursive calls that must be made.

Suppose we have a ray
r(t) = p + tr, t ≥ 0 (59)

with the ray direction r normalized (p is the origin of the ray). We begin by computing the entry and exit times for the
mother box B (the topmost and largest box) for each component:

t
(i)
0 ≜

x
(i)
entry − p

(i)
0

r(i)
t
(i)
1 ≜

x
(i)
exit − p

(i)
0

r(i)
(60)

where the entry and exit locations are selected based on the sign of r(i):

x
(i)
entry ≜

⎧⎪⎪⎨⎪⎪⎩

x
(i)
min if r(i) > 0

x
(i)
max if r(i) < 0

x
(i)
exit ≜

⎧⎪⎪⎨⎪⎪⎩

x
(i)
max if r(i) > 0

x
(i)
min if r(i) < 0

(61)
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We immediately notice a hole in the selection when r(i) = 0. This will addressed in Section H below. For now, it
is sufficient to assume that r(i) ≠ 0. We also note that since p ∈ B, t(i)0 < 0 for each i, entry times not well-suited
for top-down traversal. Accordingly, it is necessary to move the origin p to a new point outside the box that is on
the negative ray trajectory. A seemingly reasonable approach is to define t∗ ≜ max t

(i)
0 − δ for some one-size-fits-all

δ > 0 and set p ↤ r(t∗). This, however, does not take into account the physical size of the grid. If, for instance,
x
(i)
max − x(i)min = O(10−4), then since ∣r∣ = 1, the new origin will be far outside B. If the size is large, then the new p

will be very close and Eq. (60) may be numerically ill-conditioned due to the subtraction of nearly equal numbers in
the numerator. Instead, we execute Algorithm 5:

1. Set q = p to remember the original origin. Define

∆t ≜ 1

5
min
1≤i≤d

⎧⎪⎪⎨⎪⎪⎩

x
(i)
max − x(i)min

∣r(i)∣

⎫⎪⎪⎬⎪⎪⎭
(62)

2. While p ∈ B, set p↤ p − r∆t.

3. Set tpq = n∆t, where n is the number of times Step 3 above was executed. This value gives the time
required to reach the new origin p from the old one q.

Algorithm 5

There is nothing magical about the factor of 1
5

; it is chosen to balance the desire to locate a point just outside the
box (but not too near) with the effort required to do so. When r(i) ≈ 0, the division in Eq. (62) will be ill-conditioned.
Special consideration is not needed, as the minimum taken in Eq. (62) snuffs out problematic division. Because ∣r∣ = 1,
if ∣r(i)∣ = ε≪ 1 for some i, there exists i′ such that

∣r(i
′
)∣ ≥

√
1 − ε2

2
(63)

Recall that child boxes are formed by dividing the parent box in half in each coordinate. Rather than each child
box and compute entry and exit times for each via Eq. (60), we can compute the midpoint time for each coordinate
from the entry and exit times of the parent box:

t(i)m ≜ 1

2
[t(i)0 + t(i)1 ] (64)

The value t(i)m gives the time at which the ray passes through the plane (line in 2D) ei ⋅ (x − xmid). Now suppose that
r(i) > 0 for each i and consider the following 2D example:

The ray in Figure 6 pierces boxes v0, v2, and v3. The intervals of t for which r(t) remains in each box are:

v0 ∶ t ∈ [t(1)0 , t(0)m ] = [t(0)0 , t(0)m ] ⋂ [t(1)0 , t(1)m ]

v2 ∶ t ∈ [t(0)m , t(0)m ] = [t(0)m , t
(0)
1 ] ⋂ [t(1)0 , t(1)m ]

v3 ∶ t ∈ [t(1)m , t
(0)
1 ] = [t(0)m , t

(0)
1 ] ⋂ [t(1)m , t

(1)
1 ]

The ray does not intersect v1 because
[t(0)0 , t(0)m ] ⋂ [t(1)m , t

(1)
1 ] = ∅

From the above, we can easily collect for each box the necessary and sufficient condition for a ray to pierce it as
well as the entry and exit times in Table 5 below.

While we have omitted a diagram such as Figure 6 for the three-dimensional case, it is not difficult to extrapolate
up one dimension. Table 6 gives the entry and exit times for the child boxes in 3D.
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x(1)max

x
(1)
min

x
(1)
mid

x(0)max x
(0)
min

x
(0)
mid

v0

v1

v2

v3

p t
(0)
0

t
(1)
0

t
(0)
1

t
(1)
1

t(0)m

t(1)m

Figure 6. Sample Ray Piercing in 2D. Marked are the entry times t(0)0 and t
(1)
0 , exit times t(0)1 and t

(1)
1 , and

the midpoint times t(i)m . These times indicate the value of t such that the ray Eq. (59) first intersects the lines
x(0) = x(0)min, x(1) = x(1)min, x(0) = x(0)max, x(1) = x(0)max, x(0) = x(0)mid, and x(1) = x(1)mid, respectively.

Child Box Condition for Entry Entry Times Exit Times

v0 max{t(0)0 , t
(1)
0 } < min{t(0)m , t

(1)
m } t

(0)
0 t

(1)
0 t

(0)
m t

(1)
m

v1 max{t(0)0 , t
(1)
m } < min{t(0)m , t

(1)
1 } t

(0)
0 t

(1)
m t

(0)
m t

(1)
1

v2 max{t(0)m , t
(1)
0 } < min{t(0)1 , t

(1)
m } t

(0)
m t

(1)
0 t

(0)
1 t

(1)
m

v3 max{t(0)m , t
(1)
m } < min{t(0)1 , t

(1)
1 } t

(0)
m t

(1)
m t

(0)
1 t

(1)
1

Table 5. Child Box Entry in 2D. This table gives the condition necessary to pierce and new entry/exit times
for each child box in 2D. The child boxes are numbered as displayed in Figure 5. All components of r must be
nonnegative for this table to be valid.

Child Box Condition for Entry Entry Times Exit Times

v0 max{t(0)0 , t
(1)
0 , t

(2)
0 } < min{t(0)m , t

(1)
m , t

(2)
m } t

(0)
0 t

(1)
0 t

(2)
0 t

(0)
m t

(1)
m t

(2)
m

v1 max{t(0)0 , t
(1)
0 , t

(2)
m } < min{t(0)m , t

(1)
m , t

(2)
1 } t

(0)
0 t

(1)
0 t

(2)
m t

(0)
m t

(1)
m t

(2)
1

v2 max{t(0)0 , t
(1)
m , t

(2)
0 } < min{t(0)m , t

(1)
1 , t

(2)
m } t

(0)
0 t

(1)
m t

(2)
0 t

(0)
m t

(1)
1 t

(2)
1

v3 max{t(0)0 , t
(1)
m , t

(2)
m } < min{t(0)m , t

(1)
1 , t

(2)
1 } t

(0)
0 t

(1)
m t

(2)
m t

(0)
m t

(1)
1 t

(2)
1

v4 max{t(0)m , t
(1)
0 , t

(2)
0 } < min{t(0)1 , t

(1)
m , t

(2)
m } t

(0)
m t

(1)
0 t

(2)
0 t

(0)
1 t

(1)
m t

(2)
m

v5 max{t(0)m , t
(1)
0 , t

(2)
m } < min{t(0)1 , t

(1)
m , t

(2)
1 } t

(0)
m t

(1)
0 t

(2)
m t

(0)
1 t

(1)
m t

(2)
1

v6 max{t(0)m , t
(1)
m , t

(2)
0 } < min{t(0)1 , t

(1)
1 , t

(2)
m } t

(0)
m t

(1)
m t

(2)
0 t

(0)
1 t

(1)
1 t

(2)
m

v7 max{t(0)m , t
(1)
m , t

(2)
m } < min{t(0)1 , t

(1)
1 , t

(2)
1 } t

(0)
m t

(1)
m t

(2)
m t

(0)
1 t

(1)
1 t

(2)
1

Table 6. Child Box Entry in 3D. This table gives the condition necessary to pierce and new entry/exit times
for each child box in 3D. The child boxes are numbered as displayed in Figure 5. All components of r must be
nonnegative for this table to be valid.
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G. Rays with Negative Components

Table 5 and Table 6 are valid only when r(i) ≥ 0 for all i. To see how things change when directions are negative, we
consider reversing the direction of the ray in Figure 6:

x(1)max

x
(1)
min

x
(1)
mid

x(0)max x
(0)
min

x
(0)
mid

v0

v1

v2

v3

p

t
(0)
1

t
(1)
1

t
(0)
0

t
(1)
0

t(0)m

t(1)m

Figure 7. Sample Ray with Negative Directions. This ray is the reversal of the one in Figure 6.

In Figure 7 above, the ray still enters the same set of boxes but does so in the reverse order (obviously). In this
case, the entry and exit times are not given by Table 5; rather, they are

v3 ∶ t ∈ [t(1)0 , t(0)m ] = [t(0)0 , t(0)m ] ⋂ [t(1)0 , t(1)m ]

v2 ∶ t ∈ [t(1)m , t(0)m ] = [t(0)0 , t(0)m ] ⋂ [t(1)m , t
(1)
1 ]

v0 ∶ t ∈ [t(1)m , t
(0)
1 ] = [t(0)m , t

(0)
1 ] ⋂ [t(1)m , t

(1)
1 ]

If the conditions listed in the table are used to determine intersection, the result would be all failures—no intersection
would be detected at all. It follow from the above that when both components of r are negative, the intersection
condition and times for v3 are those of v0 from Table 5; for v2, of v1; and for v0, of v3.

While the knee-jerk reaction is that it is necessary to reformulate Table 5 for each possible combination of com-
ponent signs, the clever approach is to simply relabel the boxes. In Figure 7, if we simply map v0 ⇄ v3 and v1 ⇄ v2,
then Table 5 becomes valid again. In general, we can find the mapping by letting

a ≜ { 2s(0) + s(1) if d = 2

4s(0) + 2s(1) + s(2) if d = 3
(65)

where

s(i) ≜ { 0 if r(i) ≥ 0

1 if r(i) < 0
(66)

Written as a binary string of length d, a encodes the signs of the components of r, with 1 representing a negative value
and 0 a positive or zero. The new box labels are then given by

`↦ `⊕ a (67)

where ` is the integer label of the original box (⊕ is bitwise xor). In the example, a = 3, or abin = 11, so that

Original Label Original Label New Label New Label
(Decimal) (Binary) (Binary) (Decimal)

0 00 00 ⊕ 11 = 11 3
1 01 01 ⊕ 11 = 10 2
2 10 10 ⊕ 11 = 01 1
3 11 11 ⊕ 11 = 00 0
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just as was previously indicated.

While not demonstrated, Eq. (67) is also compatible with the numbering scheme in 3D shown in Figure 5. The
idiosyncratic child box ordering displays its power: it allows for reuse of Table 5 and Table 6 with a very simple
relabeling scheme. This clever trick is due to Revelles, Ureña, and Lastra [8]; our automatic entry/exit point selection
Eq. (61) eliminates the need to reflect the origin p, an improvement on their technique.

H. Rays with Zero Components: The Infinite Arithmetic Module

As mentioned, Eq. (61) provides no selection of entry and exit locations when r(i) = 0. Moreover, p will be much
closer to one of xmin or xmax. If ∣r(i)∣ = ε ≪ 1, the division by this small number in Eq. (60) will amplify this

difference significantly. As t(i)m is computed at each recursive level, it is possible for a slight error to accumulate to the
point where valid intersections are no longer properly detected.

When ∣r(i)∣ < ε, there will be little change in the ith component during the ray’s traversal across B. Recalling that
∣r∣ = 1, it follows that a small r(i) is exceptionally unlikely to cause exit from B. To illustrate, suppose r(i) = ε > 0 and
that exit is induced by this component. The total travel time across the box is

t∗ ≜ min
1≤i≤d

t
(i)
1 − max

1≤i≤d
t
(i)
0

and satisfies the relation

x(i)max = p(i) + t∗r(i)

= p(i) + t∗ε

Let i′ be the index of largest component in magnitude of r and suppose that r(i
′
) > 0. For exit not to occur first in

component i′, we need to have
p(i

′
) + τr(i

′
) < x(i

′
)

max (68)

But by Eq. (63), we have

p(i
′
) + τr(i

′
) ≥ p(i) + t∗

√
1 − ε2

2

= p(i
′
) + x

(i)
max − p(i)

ε

√
1 − ε2

2

= p(i
′
) + (x(i)max − p(i))

√
1

2ε2
− 1

In light of the above, Eq. (68) becomes

x(i
′
)

max − p(i
′
) > (x(i)max − p(i))

√
1

2ε2
− 1

The above implies that p(i
′
) must be several orders of magnitude closer to x(i

′
)

max than p(i) is to x(i)max. In the other cases
(combinations of positive and negative direction components), the above will instead involve xmin and a reversal of
the inequality. The key measure remains the relative distance from origin to exit location.

Because the ith component is not likely to be the limiting component, we simply set

t
(i)
0 = −∞ t

(i)
1 = +∞

whenever ∣r(i)∣ < τ for some tolerance τ . These indicate that

x
(i)
min ≤ r(i)(t) ≤ x(i)max

for all t. When r(i) ≠ 0, this is not technically true, but, for all intents and purposes, it is for our problem.
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When infinite values are present in t(i)0 and t(i)1 , t(i)m as computed by Eq. (64) is obviously not well-defined. To
remedy, we set

t(i)m =
⎧⎪⎪⎨⎪⎪⎩

+∞ if p(i) < x(i)mid

−∞ if p(i) ≥ x(i)mid

(69)

The logic of this section, which we dub the “infinite arithmetic module,” can result in misidentified intersections in
very rare scenarios (exampled above). However, due to the stochastic nature of the Monte Carlo algorithms, isolated
failures for the occasional misbehaving ray are not problematic.

I. Ray–Face Intersect Test

Once we’ve traced the ray’s path through the tree boxes, we must determine which faces are intersected among those
collected and which of these is the closest. In 2D, determining whether a ray and a segment intersect is rather simple.
In 3D, we again call upon the SAT to formulate a ray–face intersection test.

The reader has undoubtedly tired of detailed explanations regarding the SAT, so we merely state the methodology
without further justification. For a triangle, we compute the signed volumes of the tetrahedra formed by two of the
triangle edges with the ray direction. If all three of these quantities do not share the same sign, we can conclude the
existence of a separating hyperplane. Algorithm 6 below details the process.

Let n0, n1, and n2 be the vertices (nodes) of the triangle.

1. For each 0 ≤ i ≤ 2, put vi ≜ ni − p.

2. Compute the following quantities (volumes of tetrahedra):

u ≜ v1 ⋅ (r × v2) v ≜ −v0 ⋅ (r × v2) w ≜ v1 ⋅ (r × v0)

3. If uv > 0 and uw > 0, then the line intersects the triangle.

Algorithm 6 (Line–Triangle Intersection)

It is important to note that the above test is not a ray–triangle method but rather a line–intersect triangle. Conse-
quently, the above will detect intersection with faces along the backward trajectory. Intersection is correct only if the
ray direction and face normal point in opposite directions—mathematically, ν ⋅ r < 0, where ν is the outward-facing
normal of the face. Care must be taken when the normal is constructed via edge-edge cross-product.

A quadrilateral may be viewed as two triangles glued together. An easy algorithm for quadrilaterals comes from
applying Algorithm 6 to the two subtriangles formed by dividing the quadrilateral along its diagonal:

Let n0, n1, n2, and n3 be the vertices (nodes) of the quadrilateral.

1. For each 0 ≤ i ≤ 2, put vi ≜ ni − p.

2. Compute the following quantities (volumes of tetrahedra):

u ≜ v1 ⋅ (r × v2) v ≜ −v0 ⋅ (r × v2) w ≜ v1 ⋅ (r × v0)

3. If uv > 0 and uw > 0, the line intersects the subtriangle formed by n0, n1, and n2. Exit.

4. Otherwise, put v3 ≜ n3 − p and compute the following:

û ≜ v0 ⋅ (r × v2) v̂ ≜ −v3 ⋅ (r × v2) ŵ ≜ v3 ⋅ (r × v0)

5. If ûv̂ > 0 and ûŵ > 0, then the line intersects the subtriangle formed by n2, n3, and n0.

Algorithm 7 (Line–Quadrilateral Intersection)
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As with Algorithm 6, it is critical to include a post-check of whether ν ⋅ r < 0 to determine whether the face is
encountered forward or backward in time along the ray’s trajectory.

J. The Complete Algorithm

We are now ready to assemble the pieces forged in the preceding subsections of Section E into a clear and concise
algorithm for traversing the tree and locating the closest face of intersection:

Suppose a ray with direction r and origin q ∈ Fo ⊂ B.

1. Execute Algorithm 5 to translate p outside B.

2. Fix a tolerance τ . For each i, compute the entry time t(i)0 and exit time t(i)1 :

• Select the entry and exit locations via Eq. (61).

• If ∣ r(i) ∣ > τ , use Eq. (60). Otherwise, set t(i)0 = −∞ and t(i)1 = +∞.

3. Determine the “negative direction components.” Because components such that ∣ r(i) ∣ < τ have
essentially been set to zero by the infinite arithmetic module, we should set s(i) = 1 if r(i) > −τ
rather than the r(i) ≥ 0 of Eq. (66). With this change, compute a via Eq. (65).

4. Allocate space for a data container collection. Begin recursive traversal:

(L1) Compute the (absolute) entry time t0 = maxi t
(i)
0 .

(L2) If this box is active: if p is contained in it or t0 > tpq , where tpq is the time to the original
origin per Algorithm 5, add this box’s data to collection and terminate.

(L3) Otherwise, for each i, compute the midpoint time t(i)m :

• If t(i)0 or t(i)1 is infinite (either both are or neither is), use Eq. (69).
• Otherwise, use Eq. (64).

(L4) Using the relabeling scheme Eq. (67), determine which child boxes are pierced by the ray
using whichever of Table 5 or Table 6 is appropriate for the dimension.

(L5) For each child box entered as determined above, execute Step 4 until termination.

5. Search collection to determine the closest face of intersection (if any): initialize dmin = 0 and
Fmin = null. Then for Ft ∈ collection,

(L′1) Determine whether Ft is visible from Fo. If not, go to the loop top.

(L′2) Determine intersection with Ft via Algorithm 6 or Algorithm 7 (whichever proper).

(L′3) If intersecting and ∣centroid(Fo) − centroid(Ft)∣ < dmin and r ⋅ ν(Ft) < 0, set

dmin ↤ ∣centroid(Fo) − centroid(Ft)∣
Fmin ↤ Ft

6. If Fmin ≠ null, increment the counter for Fmin among the tallies of Fo.

Algorithm 8 (Tree Traversal and Search)

In Step (L′1), a face Ft is visible from Fo if either

1. The line segment connecting the centroid of Fo to that of Ft is on the same side as the normal of Ft.
2. The above is true instead for any line segment connecting a node of Fo to a node of Ft.
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Being on “the same side” is equivalent to the dot product between the two vectors being negative.

K. Performance

The code was tested on a variety of problem geometries, shown in Figure 8 below. The table below compares the
performance of the tree-based search with that of a previous version the code which used exhaustive search.

3D Concentric Spheres 3D Concentric Spheres, 2-Plane Symmetry
768 faces 192 faces

3D Cylinder 3D Cylinder, 1-Plane Symmetry
1528 faces 764 faces

3D Flat Plates 3D Flat Plates, 1-Plane Symmetry
200 faces 100 faces

Figure 8. Rogues Gallery of Test Problems. These are geometries used to test the octree-based code. The 3D
concentric spheres example has been sliced open to show the interior features.

The “3D Cylinder, Fine Mesh” has the same geometry as shown in the figure, just with many more grid points.
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3D Concentric Spheres (5k Rays)
768 faces, Exhaustive Search: 47.69s

Bin Size Run Time Speed Up
30 9.72s 4.9x
20 7.99s 6.0x
10 5.97s 8.0x

5 4.44s 10.7x

3D Spheres, 2-Plane Symmetry (5k Rays)
192 faces, Exhaustive Search: 20.52s

Bin Size Run Time Speed Up
30 2.59s 7.9x
20 2.15s 9.5x
10 1.86s 11.0x

5 1.51s 13.6x

3D Cylinder (10k Rays)
1528 faces, Exhaustive Search: 307.05s

Bin Size Run Time Speed Up
30 41.41s 7.4x
20 21.83s 14.1x
10 17.95s 17.1x

8 14.07s 21.8x

3D Cylinder, 1-Plane Symmetry (10k Rays)
764 faces, Exhaustive Search: 77.22s

Bin Size Run Time Speed Up
30 17.16s 4.5x
20 9.03s 8.5x
10 7.37s 10.5x

8 5.90s 13.1x

2D Cavity (5k Rays)
216 faces, Exhaustive Search: 3.01s

Bin Size Run Time Speed Up
30 1.48s 2.0x
20 1.39s 2.2x
10 1.27s 2.4x
5 1.02s 3.0x

3D Flat Plates (5k Rays)
200 faces, Exhaustive Search: 3.57s

Bin Size Run Time Speed Up
30 1.31s 2.8x
20 1.27s 2.8x
10 0.88s 4.1x
5 0.70s 5.1x

3D Flat Plates, 1-Plane Symmetry (5k Rays)
100 faces, Exhaustive Search: 2.50s

Bin Size Run Time Speed Up
30 0.96s 3.1x
20 0.87s 3.8x
10 0.64s 4.8x
5 0.48s 5.2x

3D Cylinder, Fine Mesh (10k Rays)
6414 faces, Exhaustive Search: 9892.82s

Bin Size Run Time Speed Up
30 203.97s 48.5x
20 121.40s 81.5x
10 84.40s 117.2x
8 75.02s 131.9x

Table 7. Results of Tree-Based Viewfactor Code on Example Problems. Within a problem, the same set of seeds
were used and the output among the different bin sizes was identical. A new set of seeds was used for each
problem. The test hardware was a workstation with two 2.8 GHz Intel Xeon CPUs, each with 6 cores. mpirun
with 12 processors was used.

As Table 7 shows, the tree-powered search performs spectacularly. To summarize:

• For small problems, speed-up is a modest 2-3x. Choosing smaller bin sizes results in higher speed up, although
the absolute difference in time is small.

• For medium size problems, speed-up is more dramatic and the runtime decreases steadily as the bin size is
decreased. Speed-up ranges from 5-10x.

• For large problems, the speed-up can only be described as “otherworldly,” exceeding 120x for small bin sizes.
The tree reduces runtimes to the extent that problems previously requiring massively parallel resources can be
run on desktop workstations in only a few minutes.
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VI. Code Verification

Several problems are presented in this section to verify the implementation of the view factor and enclosure ra-
diation routines in CHAR. Verification exercises demonstrate the correct implementation of the numerical algorithms
used to solve the intended equations [10]. For this work, problems with simple geometries are used since analytical
solutions exist to make comparisons against. First, simple flat plate problems will be used to verify the implementation
of the two view factor algorithms supported in CHAR. Then, the implementation of the enclosure radiation methods
described in previous sections are verified by solving a cylindrical enclosure problem.

A. Flat Plate Verification Problems

Classic flat plate problems are used for verification of view factors due to their simplicity, and the vast amount of work
done in the open literature on these problems. This allows the authors (and the reader) to have greater confidence in
the trends shown in this work by comparing to other published work. Figure 9 shows the geometry of the two types
of flat plate problems considered in the following sections. Due to the non-deterministic nature of the monte carlo
approach, each problem shown here was run 20 times to obtain an ensemble-averaged view factor. Furthermore, the
errors shown for the monte carlo results are defined as the standard deviation divided by the mean of the 20 runs (in
percent form). Results produced using the double area integral approach only had to be computed once, and the error
metric is a traditional difference between the computation and the analytical value, normalized by the analytical value,
and presented in percent form.

H

W

dH

W
l

(a) (b)

Figure 9. Geometry definitions for orthogonal plates (a) and parallel plates (b) test cases.

1. Orthogonal Plates

The first view factor verification problem consists of two flat plates, which share a common edge, and are orthogonal
to each other as shown in Figure 9. The well-known analytical view factor for this configuration is given by [11],

F12 =
1

Wπ
[W tan−1 1

W
+Htan−1 1

H
−
√
H2 +W 2tan−1

√
1

H2 +W 2

+1

4
ln

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 +W 2) (1 +H2)
1 +W 2 +H2

⎡⎢⎢⎢⎣

W 2 (1 +W 2 +H2)
(1 +W 2) (W 2 +H2)

⎤⎥⎥⎥⎦

W 2 ⎡⎢⎢⎢⎣

H2 (1 +W 2 +H2)
(1 +H2) (W 2 +H2)

⎤⎥⎥⎥⎦

H2⎫⎪⎪⎪⎬⎪⎪⎪⎭
]

(70)

where H and W are defined as H = h/l and W = w/l. Both methods available in CHAR, double area integral and
monte carlo method, were used to compute the view factors for this configuration. The number of subfaces and number
of rays cast for each of the approaches was varied to highlight the accuracy and convergence of each approach to the
analytical value. For this case, all dimensions were assumed to be equal, and therefore H/l = W /l = 1. The results
are shown in Figure 10. The symbols in each figure represent the cases which were computed using CHAR, and the
dashed line highlights the analytical view factor value of 0.200044 in each plot.
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(a)

(b)

Figure 10. View factors computed for orthogonal plates problem using monte carlo approach (a) and double
area integral method (b).
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The view factor computations using the monte carlo approach show the familiar
√
N decrease in the error a given

by Eq. (43) for a given view factor and confidence level. After approximately 250,000 rays, the resulting view factor
remains practically unchanged, with the smallest error of 0.25% resulting from casting 512,000 rays from each face.
The double area integral results also show a trend in which the answer gets better as each face is subdivided into a
larger number of subfaces. However, the view factors converge towards a value of 0.19013, which results in an error
of approximately 5%. This larger error associated with the double area integral is expected for this particular problem.
As explained in Section IV, the assumptions behind that approach hold best for small faces which are far apart. For
this scenario, the subfaces closer to the common edge between the two plates have the largest contribution to this error.

2. Parallel Plates

In order to assess the implementation and performance of the view factor methods in CHAR, an additional configura-
tion is considered in which two finite plates are parallel to each other (see Figure 9). The analytical view factor for
this scenario can be computed as follows [11],

F12 =
2

πXY
{ln

⎡⎢⎢⎢⎣

(1 +X2) (1 + Y 2)
1 +X2 + Y 2

⎤⎥⎥⎥⎦

1/2

+X
√

1 + Y 2tan−1 X√
1 + Y 2

+ Y
√

1 +X2tan−1 Y√
1 +X2

−Xtan−1X − Y tan−1Y }
(71)

where X = H/d and Y = W /d according to Figure 9. Two different separation distances (d) are considered in this
section. The results assuming a separation distance equal to the width (W ) and height (H) of both plates are shown in
Figure 11. The analytical view factor of 0.19982 is also shown in the plots. Similar to the orthogonal plates, the view
factors for this particular case are better resolved by the monte carlo approach. Even with a relatively small number
of rays, the result is more accurate than subdividing into many subfaces with the double area integral approach. The
DAI view factor reaches a value of approximately 0.239 with many subfaces, whereas the error from the monte carlo
approach reaches 0.24% for 512,000 rays cast. Additionally, the theoretical

√
N error convergence is seen again for

the monte carlo approach.
The large error seen in the previous two cases for the DAI approach highlights the types of errors which can result

if the user is not careful in selecting an appropriate view factor approach for the problem at hand. To test a scenario
which is better suited for computing view factors using DAI, a second parallel plates problem was solved but with
increased distance between the plates. Letting the distance between the plates be 10 times the width of each plate, the
analytical view factor value is 0.003162. The results obtained using both approaches in CHAR are shown in Figure 12.
For this case, even without subdividing the faces into any further subfaces, the error is within 1%. Subdividing further,
the DAI error is further reduced to values of 0.3%. This highlights the good performance of this approach when used
in appropriate scenarios. On the other hand, the error using the MC approach is very high when only 500 rays are
cast ( 90% error). Once again, the error decreases with the expected trend as more rays are used. Still, with 512,000
rays, the error is as high as 2.3%. This error could be reduced futher by continuing to shoot more rays from each
face, but would result in a large increase in computational effort to resolve this view factor further. For this particular
application, the view factor is better resolved using the DAI approach with relatively small computational expense.

In the end, the results shown for these simple flat plate problems verify the implementation of these two view
factor methods in CHAR. The convergence and accuracy for each method on each test case considered are consistent
with expectation and similar results seen in the literature [12][3]. The different cases considered also highlight the
importance for the user to understand the applicability of each view factor approach in order to make an appropriate
selection.

B. Cylindrical Enclosure Problem

The work by Blackwell, Dowding and Modest [13] presents a manufactured solution for the enclosure radiation in a
cylindrical cavity by solving the integral form of the radiosity equation Eq. (12), given by

Ji(ri) = εiσT 4
i (ri) + (1 − εi)

N

∑
j=1
∫
Aj

Jj(rj)K(ri, rj)dAj (72)

where K is defined as
K(ri, rj) =

dFij
dAj

= dFji
dAi

(73)
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(a)

(b)

Figure 11. View factors computed for parallel plates problem (X = Y = 1) using monte carlo approach (a) and
double area integral method (b).
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(a)

(b)

Figure 12. View factors computed for parallel plates problem (X = Y = 0.1) using monte carlo approach (a)
and double area integral method (b).
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and the geometric view factor between the two infinitesimally small faces (i and j) that are a distance S apart is

dAidFij = dAjdFji =
cosθicosθj

πS2
(74)

θ

θ = 0

Ai

Aj

Figure 13. Angle definition for cylindrical cavity verification problem.

The details of the derivation are not presented here since they are described in great detail in [13]. However, the
final expressions and steps used to carry out the verification of the enclosure radiation will be described. The analytical
solution to this radiating cavity problem is used to verify the order of accuracy of the discrete radiosity equations
implemented in CHAR (Eq. (23)). This problem was selected to carry out the present verification mainly because it
allows the analyst to verify the enclosure radiation terms independent of any solid conduction in the problem. The
geometry and angle definitions are shown in Figure 13. The angle (θ) is defined from the south pole of the cavity, and
defined as positive as it travels counter-clockwise. Through the derivation in [13], the temperature at every point on
the cavity is given by

T = To (cos (θ/2))1/4 (75)

Finally, the non-dimensional radiosity (J), irradiation (G), and flux (q) are simply functions of θ and are given by

J ′ = J

Eo
=

√
ε

sin (π√ε/2)
cos (θ

√
ε/2) (76)

G′ = G

Eo
=

√
ε

1 − ε
⎡⎢⎢⎢⎣

cos (θ√ε/2)
sin (π√ε/2)

−
√
εcos(θ/2)

⎤⎥⎥⎥⎦
(77)

q′ = q

Eo
= ε

1 − ε
⎡⎢⎢⎢⎣
cos(θ/2) −

√
ε

cos (θ√ε/2)
sin (π√ε/2)

⎤⎥⎥⎥⎦
(78)

and the blackbody emissive power at temperature To is Eo = σT 4
o . The distributions are shown in Figure [ADD FIG-

URE] for half of the cylindrical cavity since these are symmetric across the θ = 0 centerline. Because the temperature
is largest near the bottom of the cavity, the radiosity from faces near this region are largest, and therefore results in
positive fluxes out of these elements. On the other hand, the negative fluxes on the regions near the top of the cavity
indicate that the irradiation (G) is larger than the radiosity (J) from these faces.

For the present verification study, three different grids of varying element densities were created, and are described
in Table[ADD TABLE WITH DELs AND Ne]. As noted in [13], exact view factors for this configuration can be
obtained using the crossed-strings method of Hottel [14]. However, since this approach is not implemented in CHAR,
view factors were computed using the monte carlo approach with special considerations to the resulting error. By
rearranging Eq. (43), the relationship between the number of rays casted and the resulting error for a given view factor
and confidence interval is

N = (C
E

)
2 1 − Fij

Fij
(79)
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Keeping the view factor error approximately constant for the different grid levels considered in this section, for a
fixed confidence interval C, implies that the number of rays is directly proportional to 1−Fij

Fij
. Futhermore, for small

values of Fij , the right hand side behaves approximately as

N ≈ 1

Fij
(80)

Since each refined grid level in this work is simply a factor of 2 finer than the previous grid level, Eq. (32) implies
that by halving the size of two 1D faces (i and j), the resulting view factor F refinedij will be approximately 1/4 of the
value previous to refining the grid. Combining this assumption with Eq. (80) then suggests to increase the number
of rays cast by a factor of 4 each time the grid is refined by a factor of 2. This result was applied to this work in an
attempt to keep the error resulting from the view factors constant, and thereby minimizing the influence of this error
on the convergence of the enclosure radiation. For the coarse, medium and fine grid levels, the number of rays shot
from each face when computing view factors were 50,000, 200,000, and 800,000, respectively.

The radiosity terms were solved using the radiosity matrix equation approach described in Section III. An emis-
sivity of 0.9 was assumed, as well as To = 100K. For each grid level, the approach can be outlined as follows:

1. Compute the angle θ at the centroid of each face in the radiation domain

2. Use equation Eq. (75) to prescribe the temperature of each face

3. Solve the radiosity matrix equation in CHAR for the radiosities (J)

4. Compute the resulting flux at each face (i) according to the well-known expression [15]

qi =
εi

1 − εi
(σT 4

i − Ji)

5. Compute the analytical flux given by Eq. (78)

6. Compute the L2 of the heat flux error

Error =
N

∑
i=0

(qCHARi − qanalyticali )2

The results are shown in Figure 14 and compared to a 2nd order reference line. The results clearly appear to follow
second order convergence. Even though the theoretical convergence of the enclosure radiation terms is not formally
known, the authors in [13] present a reasonable argument as to why the discretization error is likely O(h2) since the
discrete form of the radiosity equations are derived in a manner somewhat consistent with the composite midpoint rule,
which is O(h2). In addition, the works in [13][16] have observed second order convergence in their implementations.

For the cylindrical geometry considered, it is also important to note the error introduced by the discretization of the
shape. In this case, the circular outline is simply defined by straight-line segments according to the number of faces
used in each grid level. As the number of faces are increased, the computational domain approaches the analytical
circular geometry. Therefore, errors due to solving the problem on a slightly different geometry will also decrease as
the grid levels are refined. However, the truncation error due to the changing geometry is O(h5) ([13]), and therefore
the error in the discretization of the enclosure radiation equations should be dominating in this study. In the end, the
results shown herein verify the implementation of the discrete enclosure radiation equations in CHAR.

VII. Code-to-Code Comparison

One of the main motivations to implement some of the enclosure radiation capabilities within CHAR was the
design of the cavity heating tiles experiment on Orion’s EFT-1 mission. The cavity heating tiles were two tiles on the
vehicle’s backshell, each with a cylindrical cavity cut-out on the surface of the tile to mimic damage due to an MMOD
impact. These cavities were designed with 1” diameters, and with depths of 1” and 1.4” [17]. Figure 15 shows the
two cavity tiles installed on the Orion backshell before the EFT-1 mission. During design of these cavities, CHAR
was used to analyze the thermal response of these tiles, which required many enclosure reradiation calculations. In
these features, the fraction of heating to the tile due to energy being absorbed, emitted and reflected within the cavity
walls is non-neglegible and must be accounted for. To instill confidence in CHAR’s ability to correctly model this
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Figure 14. Grid convergence results for enclosure reradiation verification problem.

problem, a preliminary code-to-code comparison was carried out against the comercial software SINDA/FLUINT 5.6
Patch Level 9 [18], which has been heavily used in the past within NASA for tile thermal analysis. For this problem
SINDA was used thorugh the Thermal Desktop (TD) interface, and radiation calculations were performed using the
RadCAD module available within SINDA.

The problem was modeled individually by two different designers, each using his own best practices for the thermal
software being run. The problem involved a realistic time- and space- dependent aeroheating boundary condition on a
half-symmetry domain of the 1.4”-deep cavity tile, which was allowed to reradiate to a constant far-field temperature.
The sidewalls of the domain, including the symmetry plane were modeled as adiabatic, and the (inner) backwall of the
tile structure was also set as adiabatic. On the inner cavity surfaces, in addition to the specified heating distribution
within the cavity, an enclosure reradiation boundary condition was set, with any view factor to space reradiating to a
constant sink temperature.

Despite several attempts to import the finite element mesh created for the CHAR analysis into Thermal Desktop,
the number of elements in this grid (∼315,000) was too many to comfortably handle in Thermal Desktop. Therefore,
a separate mesh was developed for the SINDA/TD analysis which consisted of 30,000 nodes. Both grids employed
tighter element clustering near the surface of the tile and the cavity walls, tight clustering underneath the cavity floor,
while keeping the surface elments on the cavity enclosure as large as possible to ensure convergence when computing
radiation view factors. The gridded geometry included the tile, reaction cured glass coating (RCG) on the surface
of the tile, and several substructure layers. Both, the CHAR and SINDA grids used for this analysis are shown in
Figure 16.

A Monte Carlo ray tracing approach was used with both solvers to compute geometric view factors. For the
SINDA model, 5 million rays were cast per node to achieve convergence, while the CHAR results for this problem
were converged after shooting 1 million rays per element. Also, to closely mimic the numerics in SINDA/TD, CHAR
was run assuming a trapezoidal integration rule and linear pressure interpolation in conductivity table lookups.

Comparisons were made at the ten different locations shown in Figure 17 and the comparisons between the two
codes are presented in Figure 18. The temperatures presented have been normalized by the maximum temperature
predicted by the CHAR simulation at each location. Considering differences in grids and the numerics of each code, the
results at all ten locations show excellent agreement between the two solvers. Even though further work could isolate
grid and numerics differences in this comparison, the close agreement between the two codes serves as additional
evidence to verify the implementation of the enclosure reradiation boundary condition in CHAR.
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Figure 15. Orion EFT-1 cavity heating tiles. [17]

(a) (b)

Figure 16. Grids used for code-to-code cavity problem for (a) CHAR simulations and (b) TD/SINDA simula-
tions.
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Figure 17. CHAR vs. SINDA/RADCAD comparison locations.

Figure 18. CHAR vs. SINDA/RADCAD comparison results.

VIII. Ablating Cavity Demonstration Case

This section presents a demonstration problem in which the enclosure radiation capabilities are applied to a more
realistic thermal protection system (TPS) problem. The problem considered is a two dimensional cavity with a rect-
angular cross-section in an ablative TPS material. The ablative material used for this test case is TACOT [19]. A
1.5”-thick piece of TACOT with a 1.0”-deep and 0.25”-wide cavity is considered. A deep and narrow cavity was
modeled in order to stress the enclosure radiation logic for this demonstration. The grid generated for this problem,
shown in Figure 19, contains 8600 quadrilateral elements.
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Figure 19. Mesh used for 2D ablating cavity problem.
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g =

0

q = 0, ṁg = 0
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Figure 20. Nomenclature and distribution of heating conditions applied on the 2D cavity.

Figure 20 shows the different heating distributions applied around the geometry. Different heating levels were
applied on the upstream (qus) surface, the downstream (qds) surface, the upstream and downstream sidewalls (qsw1

and qsw2 respectively), and the cavity floor (qfl). In addition, the bottom and outer sidewalls of the geometry were
set as adiabatic and impermeable walls. The aeroheating was applied using a film coefficient and recovery enthalpy
boundary condition, and the cold wall heating at the upstream location is shown in Figure 21. The environment at the
other locations were simply scaled versions of the upstream heating. The same environment as the upstream (baseline)
was used at the cavity floor and cavity sidewalls for this exercise. The only exception was the heating at the downstream
surface (qds) which was scaled by a factor of 2.5 to exacerbate the heating and recession on the downstream edge of
the cavity. These heating distributions were selected simply to stress the recession and mesh motion in this problem,
and are not intended to be physcially accurate.
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Figure 21. Baseline cold wall flux and pressure applied for the 2D cavity demonstration problem.

The problem was run for the 100-second heat pulse shown in Figure 21, and view factors were recomputed in
CHAR every 5 time steps using the Monte Carlo ray casting approach. Since a varying time step with a maximum
value of 0.2 was used, this resulted in view factors being recomputed every 1 second or less. Currently the user has
the option to select the time step frequency at which to recompute view factors. On-going developments in CHAR will
allow the user other alternatives to select when to recompute view factors.

The resulting geometry and temperature contours at four different times are presented in Figure 22. The initial
starting geometry is also shown in the background of each plot to better illustrate the amount of recession seen in this
test case. As expected, the hottest temperatures are seen near the downstream corner of the cavity due to the environ-
ment assumptions applied. Most of the recession begins near the top of the heat pulse, and it continues decomposing
and ablating until the end of the heat pulse. The aggressive environment applied inside of the cavity also resulted in
the cavity floor ablating. The sidwalls were only allowed to slide in this problem to preserve the quality of the mesh
as long as possible.
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(a) (b)

(c) (d)

Figure 22. Temperature contours and changes in geometry due to ablation of 2D cavity.

Close examination of how each view factor is changing as the mesh moves is difficult to achieve since there is a
view factor between every pair of faces within the cavity. Instead, to qualitatively assess the effect of recomputing
view factors as the mesh deforms due to recession, the view factors to space from each face are presented at 3 different
times in Figure 23. From these results, it is clear that the view factor to space changed significantly as the TPS ablated.
The most significant change is seen near the top edges of the cavity, where the view factors to space initially are 0.5 at
the outermost element. However, these values change to 0.73 and 00.27 by the end of the problem. The view to space
at the upstream edge of the cavity increases as the downstream edge ablates, and similarly, the view to space at the
downstream edge decreases significantly because the upstream edge does not recede as much. In the end, this problem
highlights the importance of recomputing accurate view factors as a mesh deforms, which is typical in ablative TPS-
type problems. Finally, this problem also demonstrates the capabilities in CHAR to account for radiation effects within
enclosures for problems involving moving meshes.
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Figure 23. Changes in view factor to space at cavity wall locations due to changes in geometry.

IX. Summary and Conclusions

The enclosure radiation capabilities implemented to-date in CHAR have been described in detail. Verification of
the enclosure radiation equations was accomplished using an infinite cylindrical cavity problem, and second order
convergence is demonstrated. In addition, implementations of the double area integral and Monte Carlo approaches
for computing geometric view factors were also verified by considering simple flat plate problems for which analytical
values are well-known. Strengths and weaknesses for each view factor approach are described in order to highlight
the important considerations when solving an enclosure radiation problem. The implementation of an octree structure
to speed up the computation of view factors using the Monte Carlo approach is presented. Complete details on
populating the tree structure and efficiently traversing the tree are provided. By considering several test problems, the
tree-powered search results in speed-ups of up to 130 times as compared to a naive exhaustive search approach.

The modeling of surface-to-surface radiation exchange is also demonstrated for more realistic problems of interest
to the broader TPS community. Results of a code-to-code comparison modeling one of the Orion Exploration Flight
Test 1 cavity tile experiments show excellent agreement between CHAR and SINDA/Thermal Desktop. Furthermore,
the code’s ability to account for the radiation exchange in a rapidly changing geometry is demonstrated by considering
an ablating 2D cavity. By leveraging the thermal modeling capabilities already available in CHAR, the implementation
of the enclosure radiation boundary condition presented in this work enables users to solve real-world, production-level
TPS problems involving complex geometries.
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