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To address the growing need to evaluate, test, and certify an ever expanding ecosystem of 
UxS platforms in preparation of cultural integration, NASA Langley Research Center’s 
Autonomy Incubator (AI) has taken on the challenge of developing a software framework in 
which UxS platforms developed by third parties can be integrated into a single system which 
provides evaluation and testing, mission planning and operation, and out-of-the-box 
autonomy and data fusion capabilities. This software framework, named AEON (Autonomous 
Entity Operations Network), has two main goals. The first goal is the development of a cross-
platform, extensible, onboard software system that provides autonomy at the mission 
execution and course-planning level, a highly configurable data fusion framework sensitive to 
the platform's available sensor hardware, and plug-and-play compatibility with a wide array 
of computer systems, sensors, software, and controls hardware. The second goal is the 
development of a ground control system that acts as a test-bed for integration of the proposed 
heterogeneous fleet, and allows for complex mission planning, tracking, and debugging 
capabilities. The ground control system should also be highly extensible and allow plug-and-
play interoperability with third party software systems. In order to achieve these goals, this 
paper proposes an open, distributed software architecture which utilizes at its core the Data 
Distribution Service (DDS) standards, established by the Object Management Group (OMG), 
for inter-process communication and data flow. The design decisions proposed herein leverage 
the advantages of existing robotics software architectures and the DDS standards to develop 
software that is scalable, high-performance, fault tolerant, modular, and readily interoperable 
with external platforms and software. 
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I. Introduction 
O begin it is important to distinction between an architecture and a framework. In the context of software for 
robotic systems, architecture is generally used to refer to the structure and layout of the subsystems that exist 

within it, including the design of the interfaces between subsystems, and the specifications for the underlying 
mechanisms by which subsystems interact, which may even describe how software should interface with hardware. 
The specification of the mechanics for interaction typically embody some form of software paradigm, such as 
describing the system as a collection of unique, loosely coupled services which can be invoked by a client and can 
invoke other services to achieve some high level goal (Service Oriented Architecture). The architecture does not define 
the details of how the system should be implemented, such as what language should be used, or what tools or libraries 
can be used to fulfill the design goals of the architecture. Frameworks, on the other hand, provide all of the details for 
the implementation. A framework is typically described as a collection of specific technologies, languages, libraries, 
and tools, which when combined with some development guidelines can be used to create software which effectively 
achieves the goals of the architectural design. It should be noted that these definitions are not necessarily accepted as 
global consensus and the two words are often used interchangeably. These definitions are for use in giving context to 
the following discussion. 

II. Design Approaches 
Before designing a software architecture for a robotic system, it is prudent to take a look at how others have done 

so in the past. What we will find, by looking at existing architectures, is that modern designs tend towards being a 
hybrid of older architectural designs that leverage the strengths of their predecessors. 

A. Standard Robotic Architectures 
 
1. Sense Plan Act 
One of the first robotic architectures to emerge was the Sense-Plan-Act (SPA) architecture1, which came out of 

the work that Stanford University was doing in the 1960s on the robot Shakey. In the SPA architecture, the general 
underlying concept is thus: Sensor data which describes the external world should be used to build a world model. On 
top of that world model, plans can be created to act within the world. Finally, without using the original sensors that 
were used to create the world model, the robot can execute the planned actions. From the viewpoint of someone 
interested in designing software to control a robotic arm in a highly static environment, this architecture seems to be 
simple and sufficient for meeting the designer's needs. However, from the viewpoint of someone wishing to design 
reactive systems which can function in a dynamic environment, the fact that planned actions are executed in a dead-
reckoned fashion, without continuously pulling in updated state information, could be catastrophic. However, the 
concept of constructing some type of world model through sensor data and planning within that sensed environment 
is critical to autonomous navigation. 

 
2. Subsumptive (behavioral) 
As people began to encounter and understand the shortcomings of the SPA architecture, new architectures that 

relied less on building a complete world model and more on reacting to sensed information began to emerge. In 1986, 
Rodney Brooks of MIT developed an architecture which would prove to be very influential in the design of reactive 
architectures. His architecture was called the Subsumption architecture1, and the main concept that constituted its 
design was that the robotic system would consist of subsystems which routed sensor inputs through a processor, which 
consisted of a finite state machine, to the actuators of the robot. This finite state machine effectively instituted a 
behavior. One important facet of this design is that the system designer could create several behaviors to provide 
several capabilities to the system, all of which could be executing simultaneously. As an example, consider a robot 
with a LIDAR scanner weaving its way through obstacles with one behavior while keeping its camera pointed at some 
specified target using another behavior. These two behaviors could be considered non-conflicting, if the actuators used 
to achieve the behaviors are different. In the case of conflicting behaviors, such as one behavior which tries to make 
a robot follow a path and another behavior which executes evasive maneuvers around incoming obstacles, some 
mechanism is required to govern which behavior has permission to control the actuators. Later, we will see this concept 
of behavior arbitration frequently. In general, this mechanism could take the form of another finite state machine 
which has the ability to make decisions using weighted considerations of current sensor inputs, current goals, and 
potential obstacles to those goals. 

 

T 
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3. Layered approach 
One thing that became apparent over time with the use of behavioral architectures is that, while it was easy to 

create algorithms and behaviors which enabled robots to react to specific environmental stimuli, it was much more 
difficult to create behaviors which achieved long-term goals by using simpler behaviors. The problem is that while a 
simplistic behavior could be created to achieve a goal, such as using wall-following to get from one point in a building 
to another, it is much harder to optimize such a behavior as the behavior is simply a reaction to a response, without 
any method of reasoning to make more efficient decisions. Of course, in the arbitration mechanism's finite state 
machine, one could design some intelligence concerning how to behave under specific circumstances, but when 
considering the complexity of most environments in which many robots operate, along with the number of behaviors 
they can express, and the number of possible situations that could occur, the finite state machine tends to grow to 
unmanageable and unwieldy sizes which can become difficult to design or reason about in their own right. 

One solution to these problems was the idea that the two sets of capabilities - intelligent sensing, modeling, and 
planning from the earlier robotic architectures and the reactive capabilities of the newer architectures - could be 
combined to create a layered architecture in which modeling, planning, scheduling, and system control are all separate 
and distinct processing layers. These layers each have their own responsibilities for intelligently making decisions or 
controlling subsystems, which enables a more efficient method of developing high-level behaviors for robotic systems. 
The layered (or tiered) approach has since seen many permutations and hybridizations and some form of it constitutes 
much of the robotic architectures we encounter today. 

B. Subsystem Communication 
The focus of the previous section was on the structural components of the software architecture or, in other words, 

the methodology by which inputs are transformed into outputs, how the components that affect those transformations 
are organized, and what exactly they are responsible for. Also important are the underlying paradigms that govern the 
connectivity of the subsystems within the architecture. These paradigms can largely drive the entire layout of your 
subsystem modules, by either enabling or limiting the various ways in which they can be connected, modified, or 
extended. Two communication paradigms for connecting subsystems are client-server and publish-subscribe.  

In a client-server communication pattern, one program communicates to another by means of sending a message 
and awaiting a response. Typically, these message passing applications, in the context of robotics, are capable of bi-
directional message flow, from an ownership of information point of view, so the notion of one program being a server 
and the other being a client tends to fall out, leaving you with a peer-to-peer communication system.  

The publish-subscribe paradigm, on the other hand, describes a communication system in which there are many 
information topics about which a distributed set of applications express interest or provide information. As an example, 
consider the scenario where one application is directly connected to a robot's forward facing distance sensor. It 
publishes values from the sensor to a particular distance sensor topic, where the structure of the sensor data is well 
established and the name of the topic is unique, such as "ForwardFacingDistanceTopic". Other applications in the 
system which are interested in that data, such as an obstacle avoidance processing module, can subscribe to the topic 
and receive updates as they are published by the originating application. 

Client-server and peer-to-peer communication styles require the explicit addressing of each participant and manual 
setup of these end-to-end transports. On the other hand, publish-subscribe systems tend to allow for a scalable, self-
discovering network topology based on the publishing and subscribing relationships applications have with the topics 
that exist within the system. To clarify, in a client-server topology, if you want to send sensor updates to a new client, 
one must explicitly create a new socket connection with that client and serve the data to them. With publish-subscribe 
topologies, it is commonly the case that the middleware library or framework which provides publish-subscribe 
capabilities takes care of the network connections for you, by connecting applications which subscribe to a topic to 
applications which publish to a topic. One of the major benefits of this feature is that the system is inherently more 
scalable and the modules in the system less tightly coupled. As applications communicate anonymously (meaning, the 
module publishing data doesn't need to know anything about the modules subscribing to it), topics and their defined 
data structures serve as a well-defined interface which can be used in a flexible manner.  

Having mentioned the two main types of communication paradigms that employed in robotics software, it is 
prudent to mention an evolution of the client-server/peer-to-peer paradigm, which is the method of invoking remote 
procedure calls (RPC), which came about in the standards for CORBA (Common Object Request Broker Architecture) 
developed by the Object Management Group (OMG) in 1991. The CORBA standard offered a new way for 
applications to communicate with each other by providing one application to interact with another application by 
remotely invoking a function in the remote application via a well-defined function interface. RPC via CORBA can be 
easily understood by drawing a parallel to the semantics of a function call in a language such as C: the function takes 
N parameters of various type, and returns an output of some type. When communicating with RPC, the client 
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application typically sends the parameters of some request as function parameters, and the response comes in the form 
of the return value. The function prototype serves as the common interface between the two applications, similar to 
how topics serve as the interface between publishers and subscribers. Underneath the hood of whichever vendor 
implementation of the CORBA standard is being used, the communication is still built upon the mechanics of 
traditional client-server interactions, which includes the use of explicit endpoint addressing. This is also true of 
publish-subscribe communication, but publish-subscribe standards and implementations expose the ability to address 
via multicast, enhancing the performance and ease of use of the software system from a networking perspective. While 
it is true that there are implementations of CORBA which found ways to utilize multicast addressing, it is generally 
not the standard method of use and can be, from subjective experiences anyway, somewhat unintuitive to work with. 

C. On Point Designs 
One topic that is worth touching on, briefly, is the notion of developing and implementing an architecture that is 

simply a point design, meaning that it is specifically developed for a single use case and is generally not flexible 
enough to be effectively used for anything more than its original purpose. An example of this might be a very specific 
software architecture that drives the operation of a sUAV vehicle that uses very specific set of hardware. Typically, 
point designs are employed when the developer does not require or foresee the need to add new hardware,  expand the 
software to drive different types of vehicles, or when there is simply not enough time to spend on building a more 
flexible design. It is true that the development of a point design in robotics typically leads to fast implementation 
times, lower costs, and better support for a specific use case. However, the goal of the Autonomy Incubator is to 
develop an architecture and framework that supports collaboration, interoperability, and scalability. Creating a design 
that assumes specific sensors, vehicle platforms, autopilot boards, or other hardware items would limit the usability 
of our research only to those that also work under the same hardware and use case assumptions. With that in mind, 
the following section examines potential methods for achieving the desired usability and flexibility. 

D. Robotics Software Frameworks 
The Robot Operating System (ROS) is one of the most popular frameworks in the robotics software design 

landscape. 
 
1. The Robot Operating System (ROS) 
Despite the name, ROS is not actually an operating system. On the homepage for ROS2, it accurately describes 

itself as an "[open source] set of software libraries and tools that help you build robot applications." In the context of 
earlier discussions, this matches our definition of a software framework. In a summary of what ROS provides to the 
user, we see that it provides: 

 An architecture built around publish-subscribe messaging communication, with RPC capabilities additionally 
bundled in. 

 A set of standardized (within the context of its own ecosystem) message formats common to robotics 
applications, like distance sensor data, motor commands, and more. 

 A format and language for describing the layout and physical properties of robots. 
 A tailored build environment, conductive to providing users with a consistent methodology for organizing 

and building ROS applications. 
 A suite of libraries and tools for designing, visualizing, testing, and deploying distributed robotics 

applications. 
 A package management system for installing other existing ROS applications within the ecosystem. 
 Client libraries for the C++, Python, and LISP languages on Ubuntu Linux, with experimental support on 

other Unix-based operating systems. 
 
At a glance, it seems that ROS provides most of the desired features for the design and development of an open 

software architecture and framework that supports efficient and consistent development within the architecture. 
However, there are some shortcomings. 

 ROS's communication framework is not based upon any open communications standards, so users wanting 
to integrate their software with ROS have no standard interface for doing so and must roll their own. 

 Applications within the ROS ecosystem are not held to any standards by a committee. Because of this, the 
ecosystem consists of applications with widely varying interfaces and message structures. 

 In addition to the above, because there is no oversight, there is no guarantee of quality or correct functionality 
of any package within the ecosystem. 
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 In conjunction with the previous problem, because ROS client libraries update in a somewhat frequent 
manner, and because there is no guarantee that previous and future versions will be compatible, a 
considerable portion of the application ecosystem is in an isolated, broken, or otherwise unverifiable state of 
functionality. 

 ROS is fairly limited in terms of which platform it is capable of running on. 
 Client library support for ARM platforms is somewhat more limited than x86_64 platforms, and the 

installation process tends to be error prone. This reduces its usability on many of the single board computer 
devices commonly used in robotics.  

 Because effective use of ROS tends to require the use of its provided tools and build environment, there is a 
significant amount of expertise that a user must gain before being able to work in the ecosystem. 

 The build environment relies exclusively on a piece of software called Catkin, which forces the user to adhere 
to its structure and usage. 

 ROS employs the use of a centralized "ROS Core" process, which serves as a single point of failure in the 
network topology. 

 
With both the advantages and disadvantages in mind, we believe that while many of the goals and characteristics 

of ROS are in line with our visions of an open robotics architecture and framework, the disadvantages present several 
challenges that stand in the way of interoperability and allowing for the conjunction of systems that exist in ecosystems 
outside of ROS. To address these problems, we turn to the Open Middleware Group’s (OMG) Data Distribution 
Service (DDS) for Real-Time Systems3. 

 
2. Data Distribution Service (DDS) 
DDS is a standard for publish-subscribe middleware which brings several new features, abstractions, and 

guarantees to the table in the design of distributed software systems and systems of systems. As DDS is a standard, 
there are many vendors which have implemented middleware suites which fulfill the requirements of the standard and 
provide other extended functionality and tooling on an individual basis. All of the implementations of DDS 
middleware are guaranteed to be interoperable at the wire-protocol level, so there is generally no risk of vendor lock-
in when choosing an implementation. Communication using DDS centers around the interactions between a collection 
of DDS defined entities. As shown in Figure 1, these entities are Topics, Participants, Publishers, Subscribers, 
Datareaders, and Datawriters. At a basic level, a Participant has both a Publisher and a Subscriber, and the Publisher 
and Subscriber contain various datawriters and datareaders, respectively, which communicate with each other about 
specific Topics, which correspond to messages about a certain type of data.   

 

 

 Figure 1: Publish-Subscribe Middleware Model 10 
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Some of the features of DDS that make it stand out for our purposes: 
 A completely decentralized network topology; there is no centralized message broker. All applications 

discover and communicate with each other directly. 
 DDS network topologies are completely "plug-and-play". Discovery is a persistent function carried out by 

the middleware, allowing asynchronous joining and leaving of participants. 
 Various measures of Quality of Service (QoS) which are associated with each type of entity. These QoS 

measures provide certain guarantees which are fulfilled by the middleware concerning transactions between 
the various entities. Examples include reliability, durability, deadline, transport mechanism, history, and 
more. 

 Support for Windows, Linux, and Mac, and also actual real-time operating systems such as VxWorks. 
 Support for more languages, including C, C++, C#, Java. Additional language support is also provided by 

certain vendors, such as for ADA, Scala, and Javascript languages. 
 Lightweight, small footprint implementations for embedded systems. 
 Portability. It can be used in existing frameworks and build environments with few modifications. 
 Communication over heterogeneous network technologies, such as ethernet, wifi, bluetooth, serial, RF, etc. 
 OMG's IDL specification for files expose the data types referred to by topics. If a system exposes its data 

model and its IDL files, it is immediately possible to achieve interoperability with other DDS enabled 
software systems. 

 Several higher level communication capabilities that are typically reinvented by teams that build distributed 
systems, such as filtering of data, reliability guarantees, liveliness status management, wire-level failure 
handling. 

 Built in capabilities for building highly reliable, redundant systems with deterministic networking 
configurations. 

 Communication framework abstracted away from the users of a DDS-based framework. All these need to 
know is how to create readers, writers, topics, and data types, all of which are greatly facilitated and simplified 
by the middleware and its tooling. 

 

III. The Aeon Architecture 
The Aeon Architecture is designed to achieve the following high-level goals of the LaRC Autonomy Incubator: 
 Rapid integration of both in-house and third party software modules 
 Platform agnosticism 
 A system that is high performance, fault tolerant, and redundant 
 A high level of modularity with extremely loose coupling to achieve reusability and flexibility 
 Abstraction of networking details and boilerplate from researchers and third parties 
 Distributed communications that enable software to run anywhere 
 Interoperability via well-defined communication  interfaces based on standards 

 
Our proposed solution comes in the form of what could be considered a lightweight alternative to ROS that uses 

RTITM Connext DDS middleware implementation as its communication layer. What is meant by lightweight is that, 
for the most part, our framework does not impose any build environment requirements or restrictions. The core unit 
of our software framework is an application called AeonCore. This application is composed of a few important 
subsystems: 

 AeonDDS – A project that is shared by all application nodes in the system and contains the IDL, Application, 
and QoS XML files used by the DDS middleware. By every application having access to this, the developer 
can easily add new interfaces and find existing interfaces when developing a new node. 

 Base Application Class – A class that sets up the application in a ready-to-use manner. The developer need 
only derive their own application from this class and implement their own specific application logic. 

 DDS Manager Class – This class facilitates easy construction of all DDS entities in the middleware layer of 
the application without the developer needing to know how to manually use the DDS API to manually 
accomplish these tasks. It also acts as an easy to use interface to the DDS entities for when the user wants to 
read or write data. 
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By utilizing RTI's  XML-based DDS application creation functionality, the setup of DDS-enabled applications is 
greatly simplified, and much of the knowledge required to create and manage DDS entities is abstracted away from 
the user. Combined with the fact that all communication related interfaces and settings are stored in a shared set of 
XML and IDL files, it is easy for any developer in the system to create or modify interfaces between application nodes 
without needing to be an expert in the DDS middleware's API. Because creating and modifying interfaces is as easy 
as modifying IDL and XML files, and since the user can simply modify a couple of functions in the AeonCore skeleton 
application, our goal of enabling rapid integration of in-house and third party software modules is achieved. The 
typical workflow involved in creating a new node is as follows: 

 Choose and include the IDL files that contain types you want to read or write 
 Create an application profile that sets up the various DDS entities you need in your application in the app 

profile XML file, choosing the various QoS settings that make sense for your node. 
 Modify the DDS Manager class to load your app profile. 
 Create a class that inherits from the base application class and implement your logic as you see fit 
 Use the DDS manager as an interface to the DDS datareaders and datawriters 
 Optionally use the DDS WaitSet object in the application class to handle new samples, status updates, etc.  

 
Beyond core node, we examine the overall structure for the onboard vehicle software architecture. Similar to the 

multi-layered approach that we examined earlier, our architecture expresses itself as a hybrid architecture pulling in 
elements from SPA and Subsumption. As an overview, the architecture is split into four layers:  

 Data Production 
 Executive 
 High-Level Behavioral 
 Service. 

 
The first layer is the Data Production Layer. The Data Production layer functions as a funnel that pulls in processed 

sensor data from several sensor processing nodes that handle outputs from real sensor hardware or the outputs of other 
sensor processing nodes. Eventually, once the sensor data is as processed as it can be, the second highest tier of 
processing nodes format the data into a standard data structure known as an Entity State. The Entity State structure 
contains position, velocity, and acceleration values and variances for both the vehicle itself and other entities in the 
world. Several Entity State messages are published by a varying array of sensor processor nodes and are fused together 
using an asynchronous filter in both a SelfEstimator and WorldEstimator node. These two nodes provide a final, fused, 
best-effort Entity State structure which can be used anywhere in the rest of the system where self state or the state of 
external objects is required. As an example, the vehicle controller which requires knowledge of the vehicle's state, 
subscribes to the SelfEstimator's output, and the PathPlanner module, which requires knowledge of obstacles, 
subscribes to the WorldEstimator's output. In addition to the condensed, standardized format of Entity State, the sensor 
processor modules can also publish their specific data streams, such as an optical flow sensor module publishing data 
specific to optical flow measurement parameters. In this way, all data produced by any sensor can be made available 
to the rest of the system asynchronously and on demand. By using various QoS settings, even more complex and 
powerful behaviors can be achieved in the Data Production layer. 

The next layer, which is currently under development, is the Executive Layer. The Executive Layer contains 
modules which are responsible for handling the permissions of other nodes within the system, making critical 
operation decisions, and handling overall system status and capability degradation. 

Following the Executive Layer is the High-Level Behavior Layer (HLBL). The HLBL contains nodes which chain 
together nodes in the final layer, the Service Layer, to perform more complex behaviors than any single service on its 
own could achieve. Thinking about the subsumption architecture and SPA architecture from before, services can be 
thought of as behaviors that take inputs from HLBL nodes, other Service Nodes, and Data Production Layer nodes to 
actuate the vehicle's hardware. The HLBL can use the various discovery and QoS properties of the DDS Middleware 
to dynamically chain services together to execute complex tasks, such as navigation to specific points, searching for 
targets, or controlling other hardware to interact with the environment in different ways. Some services have 
capabilities that do not involve actuating hardware directly, such as path planning services. These services typically 
handle the “Plan” part of the SPA paradigm by taking the outputs from the Data Production Layer (“Sense”), 
processing those outputs, and feeding the inputs to services which can “Act”. In this manner, we have designed a 
system which reaps the benefits of being able to asynchronously sense, plan, and act, while instilling the planning and 
acting capabilities in a set of reusable behaviors known as services, and being able to schedule those services using 
HLBL nodes. See Figure 2 for a high level view of the architecture with example nodes provided in each layer. 
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Another aspect of the architecture which helps achieve the Autonomy Incubator goal of a distributed robotics 
system is the fact that each vehicle has its own DDS partition within the Vehicle DDS domain. This keeps all of the 
internal messaging of the vehicle contained to its own local, onboard network. There exists in each vehicle software 
set a node that acts as a bridge to the GCS domain and also to other vehicle bridge nodes to enable distributed 
communication between both peers and applications in the ground control domain. 

 

 
 

Figure 2: AEON Architecture 

 

IV. Future Work 
Moving forward, our next steps involve building additional capabilities onto the software ecosystem that executed 

the previous demo. We have already been able to run most of the existing software on new vehicle platforms that can 
carry more sensors and heavier payloads, which will be required to perform more complex missions. By rapidly scaling 
the software ecosystem node by node, with each researcher working on the pieces in which they have expertise, we 
hope to demonstrate the significant strength and flexibility of our architecture and approach to solving distributed 
robotics. Some specific areas that will see significant improvement in the immediate future are the development of 
the more advanced, asynchronous input, SelfEstimator and WorldEstimator filter modules, the development of more 
robust control algorithms in the VehicleController node, the development of sensing and avoidance algorithms that 
will feed vehicle navigation behaviors, and also the development of ground control modules that will provide novel 
methods of human interaction with the vehicles. Having finished and validated the framework at a prototype level, we 
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are confident that the system will continue to improve and further achieve the goals laid out for the LaRC Autonomy 
Incubator. 

V. Conclusions 
The Autonomy Incubator employs an Agile development methodology and so the software system is rapidly 

evolving in support of monthly showcases. In one of our most recent demonstrations, we utilized the framework and 
system to enable a quadrotor sUAV to autonomously navigate to waypoints while dynamically replanning around 
dynamic obstacles. As an example HLBL node, we used a simple console that allowed the operator to request the 
vehicle to navigate to particular waypoints. These requests were passed to a PathPlanner service node, which took 
inputs from the SelfEstimator and WorldEstimator nodes to plan a safe route around any detected obstacles. Figure 3 
shows the relationships and interactions between the nodes in this demonstration. 

 

 
 

Figure 3: AEON architecture and framework utilized in recent Autonomy Incubator demonstration 
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In developing the software for this demo, the AI4-9 accomplished many of the goals for our architecture, particularly 
by developing the AeonCore node which served as a framework on which several researchers could quickly implement 
functionality based on their individual research paths in application nodes that were distributed across a number of 
platforms and languages. With regards to our goals in developing a distributed ground control software ecosystem, a 
few prototype applications were developed that allowed capabilities such as voice command of a vehicle and also the 
visualization of data coming off of the vehicle for data gathering missions involving vehicles carrying sensor payloads. 
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