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Autonomous decision making in the presence of uncertainly is a deeply studied problem space 

particularly in the area of autonomous systems operations for land, air, sea, and space 

vehicles. Various techniques ranging from single algorithm solutions to complex ensemble 

classifier systems have been utilized in a research context in solving mission critical flight 

decisions. Realized systems on actual autonomous hardware, however, is a difficult systems 

integration problem, constituting a majority of applied robotics development timelines. The 

ability to reliably and repeatedly classify objects during a vehicles mission execution is vital 

for the vehicle to mitigate both static and dynamic environmental concerns such that the 

mission may be completed successfully and have the vehicle operate and return safely. In this 

paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition 

system planned for our autonomous framework, AEON23, in selected domains, which fuse 

decision criteria, using prior experience on both the individual classifier layer and the 

ensemble layer to mitigate environmental uncertainty during operation. 

Nomenclature 

LIDAR   = Light Detection And Ranging 

SONAR   = Sound Navigation And Ranging 

PM   = Performance Matrix 

S   = Symbol Object or Weighted Sum. Defined in text. 

A   = User Input Symbol 

B   = Algorithm Decision Symbol 

P( )   = Probability Distribution 

AEON   = Autonomous Entity Operations Network 

DDS   = Data Distribution Service 

Java   = The Java Programming Language 

C++   = The C++ Programming Language 

NASA   = National Aeronautics and Space Administration 

SLAM   = Simultaneous Localization And Mapping 
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VO   = Visual Odometry 

INCA   =   “I’ve No Cute Acronym”, Ensemble System 

ELARS   = Ensemble Learning And Recognition System 

MAV   = Micro Aerial Vehicle 

GPS   = Global Positioning System 

NAS   = National Air System 

UAV   = Unmanned Aerial Vehicle 

AAV   = Autonomous Aerial Vehicle 

UxV   =   Unmanned (Land/Air/…) Vehicle 

I. Introduction 

The Autonomy Incubator at the NASA Langley Research Center in Hampton, Virginia, is an agile, start-up 

modelled initiative, tasked to invigorate autonomy research within NASA and push towards safe, reliable, and 

predictable autonomous solutions intended to participate both within and without the National Air System, NAS, 

framework. Multiple research initiatives are ongoing, covering topics like DDS based autonomy frameworks23, 

controls and dynamics24, reinforcement learning25, go-around decision controllers26, human computer interfacing and 

ground control systems27, safe and robust operations28, and test and evaluation29. The work described in this paper 

constitutes the autonomy and decision making component and how machine learning can be used for mission 

management of UxVs. 

Machine learning and pattern classification methods are classically considered a subcategory of the Artificial 

Intelligence, or AI field of computer science. AI is defined in Tveter2 as the field that studies the synthesis and 

analysis of computational agents that act intelligently. Computational agents are further defined as devices that act in 

a given environment whose decisions can be explained via a computational model9. 

      The central scientific goal of the Autonomy Incubator research initiative is to understand the principles that make 

intelligent behavior possible on robotic platforms. This is accomplished by analyzing both natural and artificial 

systems, formulating and testing hypothesis, and designing, building, and evaluating computational systems that 

perform tasks whereby having intelligence is regarded as necessary2.  

      The problem of using intelligence for recognition system robustness and reliability is an ongoing issue in machine 

learning. Tuning an algorithm to perform well is more of an art than a science3. Recognition algorithms often work 

“ok” but do not perform well when variances in lighting, symbol alignment, or scale occur in the input data. For 

instance, in Boas12, tests were conducted at airports in Boston, Massachusetts, Dallas, Texas, and Fresno, California, 

where face recognition technologies were implemented in attempting to identify passengers. The results were 

considerably discouraging due to variations in lighting, skin textures, and scale and orientation components. Over and 

under fitting the recognition model to the training data also play roles in the poor performance of recognition systems. 

Bias and variance factors must be considered9.  

      In attempting to decrease classification error and improve system robustness, researchers investigate three basic 

components of the classifiers and training sets. The first component, bias, measures the accuracy or quality of a 

classification match, while the second component, variance, measures the precision or specificity of the match. A high 

bias implies a poor match, and a high variance implies a weak match3. The third term, noise, is a measure of the 

amount of additional information that adversely affect the overall correctness and robustness of a recognition system 

      In statistical machine learning, we wish to model a function that transforms the input symbol to some output11. 

This function can be a regression problem, where the input symbol maps to a set of data values, like age, or height. 

The function can try to solve a category prediction problem where the input is mapped to a symbol and then executed 

as a command. With real world systems, noise invariably enters with the input and must be handled without knowing 

the amount or form of the noise data. Lighting variance, flickering of some background source not present in the 

training data, variations in training interpretation, improper correction factors, and many more are all considered 

sources of noise that can not necessarily be accounted for in the training set for a particular algorithm9. 
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      In fitting the model to the training data, we must consider the effects of bias and variance in order to improve 

performance with respect to symbol recognition. If our model is poor then we have a high bias problem where neither 

the training set nor test data perform well. However, if our method is too powerful, then we may experience a 

variance issue where our system performs well on the training data but poorly on the test data. 

      Researchers have proposed a general table for solving some of the major issues with bias, variance, and model 

construction. In Bradski11, researchers from Willow Garage; a research company once focusing on robotics for 

consumer applications, created table 1 as a general guide to addressing these concerns. 

Table 1 – Willow Garage's general solutions to machine learning problems. 

Problem Possible Solution 

Bias 

 

 More features can help make a better fit 

 Use a more powerful algorithm 

Variance 

 

 More training data can help smooth model 

 Fewer features can reduce overall fitting. 

 Use a less powerful algorithm 

Good test/train, 

bad real world 
 Collect a more realistic set of data 

Model can't 

learn test or train 
 Redesign features to better capture 

invariance in the data. 

 Collect new, more relevant data. 

 Use a more powerful algorithm. 

      Table 1 shows that bias and variance are tied in an inverse manner. To mitigate high bias, we select more 

discriminating features while using a more powerful algorithm, yet to mitigate high variance, the opposite is true. So a 

middle ground must be found such that we maximize classifier performance and minimize the negative effects of bias 

and variance11. This is often a difficult hurdle and illuminates the point that over-tuning an algorithm breeds internal 

deficiencies and thus limits the classifier to a highly defined task domain. 

      Two factors are of importance to a user in determining the performance of a recognition system. The first is the 

system's response time. For concerns like detection and avoidance the system is desired to behave with a high 

response rate. The second is the recognition algorithm's correctness. An algorithm is required to be consistently 

correct and reliable thereby maintaining a systems deterministic output.  

      It is difficult to achieve high recognition results using a single classifier due to many pattern variations which 

depend on deep prior knowledge not available in the training phase of standard recognition pipeline13. 

Overspecialization of an algorithm for maximal performance may cause it to become ineffective in environments in 

which it was not designed. Adjusting for the problems of bias and variance bounce algorithms between being too 

powerful or too weak. This problem has led researchers to using ensembles of weaker designed classifiers, combined 

correctly, that result in higher classification accuracy and robustness9.  

With these considerations in mind, ensemble systems are considered, consisting of weaker sets of classifiers, to 

better predict and track objects of interest. Klien22 details the varied components of sensor and data fusion and how 

techniques like ensembles, particle filters, and other methods are used such that a system may learn, refine, and 

better handle dynamic conditions in a real world application domain. The Autonomy Incubator, using visual 

cameras, LIDAR, SONAR, thermal, and vehicle communication channels, are pushing towards a robust autonomy 

framework, AEON23, Autonomous Entity Operations Network, aiding an autonomous entity’s decision making 

capability. 
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II. Background 

A. Ensemble Methods 

      There are two distinct variations of ensemble systems in practice. The first system involves a single algorithm that 

is iterated over a training dataset to produce a number of classifiers. This is referred to as a dependent framework. The 

second system is one that combines a number of distinctly independent algorithms, each possessing a separate 

classifier. This is considered to be an independent framework7.  

      With this understanding, an ensemble framework typically contains the following components7: 

 Training set 

 Base inducer 

 Diversity Generator 

 Combiner 

      The Training set is a labeled dataset used for the ensemble learning stage. This set contains a representation of the 

alphabet of symbols making up the decision space of possible classes. 

      The Base Inducer is the algorithm or set of algorithms that obtains a training set and forms the classifier(s). The 

classifier or set of classifiers represent the generalized relationship between the input features and target mapping to a 

class. 

      The Diversity Generator, for dependent ensemble approaches, generates the diverse classifiers over the alphabet 

of symbols in the decision space. In independent ensembles, this component is typically not used. 

      Finally, the Combiner brings together the classifiers and maps the sample space of classifier output to the decision 

space of the system whereby producing an overall recognition decision. Various ensemble decision and classifier 

combination methods exist.  

      Apart from the general framework and training set approach to the ensemble system, the combiner constitutes a 

significant component to a well-functioning system. Combination methods are varied and generally deal with the best 

vote or highest probability measure of a set of classifier decisions9.  

      Standard combination techniques range from weighting methods, such as majority voting and classifier weighting, 

to Bayesian combinations methods and log opinion pools7. Whatever the approach taken, the general system must 

deal with three important issues.  

 The response of the multiple classifier must be the best one given the results of each individual 

classifier.  

 The possible responses may be of differing types and need to be combined in a coherent way.  

 The ensemble must perform better than any individual in the system, otherwise there is no need for 

the ensemble14. 
 

Previous work in gesture and object detection and recognition systems using an ensemble of classifiers1, 8, and 9 has 
shown substantial advantages to using ensemble systems as a means to better guess appropriate responses over an 
individual classifier approach. Starting in the 1970’s, researchers have studied the benefits of a combined classifier 
approach such that the overall fused classifier system out perform an individual classifier in the ensemble15. Progress 
in ensemble systems gained greater interest in the 1990’s with Hanson and Salman4, suggesting that an ensemble of 
neural networks improved the predictive performance of a single network. Additional techniques, such as Bagging 
and Boosting as in Schapire5 empirically demonstrated that a strong classifier can be constructed by incremental 
training of a series of weaker classifier algorithms by using the prior classifier performance as input into the next 
classifier in the set. 
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Bagging, boosting, and other techniques have been shown to improve approaches in remote sensing16, incremental 
learning9, and gesture recognition1, highlighting vetted approaches to implementing ensemble solutions on production 
level systems. 

In addition, there typically exists two standard ensemble methodologies. One method, generative; as with 
Adaboost17, form the classifier ensemble by iterating over a classifier, modifying the training set on each pass over a 
given classifier to better support deficiencies in the overall recognition space. The series of generated classifiers are 
then fused such that each decision set gets passed along the series, with a final decision representing the best 
evidence-based supported selection. The second method, non-generative, do not actively generate classifiers but 
combine the independent classifiers after each component classifier has made a selection based on the problem space 
feature points. Figures 1 and 2 depict the two system architectures. 

 

Figure 1 – Generative Ensemble System9 
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Figure 2 – Nongenerative Ensemble System9 

 

It is important to consider the three types of classifier output typically found in these methods1. 

 

 Type 1: Abstract / Exact - Each classifier Ci outputs a single label given an input feature vector x 

pertaining to an unknown symbol x. Type 1 output contains no certainty measure as to the classifiers 

confidence in the mapping Ci(x) = Li, with Li representing a label in the classification space. 

 Type 2: Rank – Each classifier output provides a ranked set of output values. The output is in a ranked 

order from most plausible to least and can be thought of as the statement “The symbol is most likely a 

4, but could be a 3, and less likely a 2.”This can be especially suitable for problems with a large 

number of classes1. 

 Type 3: Probability – Each classifier output gives the most information since either a ranking or 

classification can be produced from it9. Type 3 output is in the form of a probability distribution of the 

unknown input symbol over the recognition alphabet. Here, Ci(x) = {a1(x), …, aL(x)}, is the set of 

probabilities that classifier Ci considers the unknown input symbol x as belonging to class a1...aL. 

 

      From Newell, Neilan and Henderson1, both Parker10 and Sannen7 state that type 1 classifiers output provide the 

least benefit to classifier fusion since alternative solutions are not given. Type 2 classifiers output offer relative 

information about possible symbol class labels, giving a rank comparison between each symbol. This type does not 

give absolute information regarding how the classifier performed over the entire sample space. Type 3 classifiers 

output offer the most information about alternative class possibilities.  

 
We focus on a non-generative approach in this paper due to three main reasons supported by the methodology: 

1. Modularity in Input Modality 

2. Modularity in Implementation Domain 

3. Modularity in Plug-n-Play Algorithm Selection 
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Our software framework implements the DDS (Data Distribution Service) protocol which allows us to easily and 
reliably modularize our autonomy components, fostering plug-n-play component capability, among other advantages 
discussed in greater detail in Cross et al.23. With this framework, AEON (Autonomous Entity Operations Network), 
we are able to develop and implement both novel and COTS (Consumer Off The Shelf) solutions quickly and with 
immediate quantitative feedback. ELARS, Ensemble Learning And Recogition System, is currently being 
implemented in AEON, and we intend to determine application effectiveness in an indoor, cluttered flight pattern, 
using quad-rotor air frames. 

The proposed system, ELARS, uses Bayesian inference, described below, and is based off of work done by 
Newell, Neilan, and Henderson1. 

 

B. INCA1 

Newell, Neilan, and Henderson1 describe INCA (“I’ve No Cute Acronym”), as a non-generative Bayesian based 
meta-algorithmic model that combines individual recognition results of the component algorithms to produce an 
overall recognition decision which is no worse than the individual algorithmic output. Empirically, the model has 
proven to produce results 10~20% above the component methods in the gesture recognition domain of hand-sign and 
hand-written symbols.  

As described in Newell, Neilan and Henderson1, the INCA model assumes the existence of N different recognition 
algorithms. Each of the algorithms contain inherent strengths and weaknesses and tend only to be strong in subsets of 
the application domain, while weak over the remaining recognition set contained in the domain. The key to INCA’s 
performance was the effectiveness in the use of inherent algorithmic weaknesses and consistency of those 
weaknesses. For example, if an algorithm misrecognizes a handwritten ‘H’, as a ‘K’, then this information is useful 
and allows a researcher to modify the importance of the algorithm’s result. Figure 3 gives an overview of the INCA 
data flow. 

 

Figure 3 – INCA layout1 

 

Bayes’ Theorem is based upon the concept of conditional probability. Bayes theorem is presented below. It 

applies conditional probability to a partition of some sample space of mutually exclusive and exhaustive sets 

(A1,A2,A3…Am). The theorem supplies a formula for P(Ai | Bk) where Bk is some empirically observable event. For our 

purposes, Bk is the recognition result produced by some algorithm and the Ai values represent the event of some 

symbol having actually been entered as input1, 8. 

 

 

               (1) 

 

 

The power of INCA comes from the use of Bayes’ theorem, or more explicitly, the confusion matrix built of the 

performance metrics over the recognition domain to support future recognition decisions. A performance matrix for 

any component algorithm is an M×M matrix where M is the number of symbols in the recognition domain. For any 

recognition algorithm Ai the performance matrix PMi [x][y] contains the number of times that, during previous 

recognitions, the algorithm Ai recognized the actual input gesture Sx as the gesture Sy. After applying Bay’s theorem to 

the data stored in the confusion, or performance matrix, INCA can determine the probability that any gesture was 
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given, here denoted as Sx, was in fact the actual gesture entered given the algorithms recognition of Sy as its result. 

This corresponds to the conditional probability P(Sx|Sy), and given as: 
 

 

        (2) 
  

 

 As an example, figure 4 depicts the confusion matrix for a sample algorithm and its confidence vector for the 
recognition of the digit ‘1’. 

 

Figure 4 – Confidence vector1 representing the probability space for the algorithm recognizing the symbol “1” and the INCA probability that the 
user did in fact enter a “1”. 

 

    Here, it is shown that the entry PMi [x][y] in the matrix over the sum of the column PMi[*][y]. Once this 

calculation is carried out for each gesture in the given alphabet we can build its confidence vector. We can then 

proceed to combine it with the vectors of all other algorithms to obtain the overall system recognition result. 

   

Considering the three types of classifiers in a non-generative system, Newell et al.1 has identified that the INCA 

model from previous work converts type 1 and 2 information from individual classifiers into type 3 via the 

performance metrics tracking and analysis. 

 

III. ELARS- Ensemble Learning And Recognition System 

In Neilan9, INCA was extended into the American Sign Language, ASL, hand-signed and handwritten character 
recognition domain, testing three fusion methods of the component algorithm confidence vectors and comparing 
against a more memory intensive method known as Behavior Knowledge Spaces, BKS. The system, ELARS, 
Ensemble Learning And Recognition System, was a Java based application that accepted two input modalities; a pen 
tablet and data glove, and compare fusion techniques in the gesture recognition domain.  

In the practice of data fusion, INCA represented the first step in the standard fusion pipeline, lending itself to 
testing fusion methods to better support a systems autonomous decision given supporting or conflicting evidence.  

      ELARS extended the INCA concept by implementing machine learning techniques coupled with a pen tablet and 

data glove modalities. Figure 5 defines the system layout. 
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Figure 5 – ELAR System Layout9 

      The component algorithms in ELARS are disjoint and independent of one other. The system is initially trained in 

a batch mode configuration, accepting a training set or sets for each algorithm. Once the training is complete, the 

performance matrices are saved to an “.xml” file. These files are then used to initialize the performance matrices for 

the on-line component of the system.  

      The on-line configuration represents the entity recognition engine. Symbol input is received via the input layer 

consisting of the desired input device(s). The symbol is passed to the component algorithms and each algorithm 

produces a mapping to known label. The ensemble component then takes the input symbol guesses from the 

component algorithms and the performance matrices corresponding to each algorithm to create a set of 

corresponding confidence vectors. The confidence vectors are then combined and a final decision is given9. 

      The autonomy implementation of ELARS consists of the learning feedback branch for the overall system, 

allowing for not only the individual classifier priors to play a role in the decision process, but the overall system 

performance given environmental considerations are used to better support a decision. Extending this into a multi-

modal input functionality, ELARS will listen to visual camera information, LIDAR, SONAR, and communications 

information to better handle the flight environment and mitigate risk while executing a desired mission. 

 We briefly discuss single and multiple input modality ensemble systems in the community as examples of how 

ELARS may be used in a domain agnostic manner. 
 

C. Single Input Modality Classifiers 

     In the domain of handwritten character recognition, Xu, Krzyzak, and Suen present results of four expert 

algorithms, each involving techniques of skeleton and contour feature extraction for recognizing handwritten 

digits18. The database used was from U.S. Zipcode database of the Concordia OCR research team and consisted of 

6000 samples with 400 samples for 10 numeral digits. 4000 of the samples were subsequently used for expert 

training, with 2000 symbols saved for validation. 

      The experts, or algorithms, were first tested individually, performing with 86.05%, 93.10%, 92.95%, and 

93.90% accuracy for experts “1” through “4” respectively. The four experts where then combined using Dempster-

Shafer (DS), naïve Bayes(NB), and voting methods described in section 2.2. Xu et al. confirmed that each 

combination method did in fact improve overall recognition over the individual methods in the ensemble. 
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      The Dempster-Shafer method performed the best with an overall recognition of all digits with 98.95% accuracy 

with a rejection rate, or rate in which the input symbol was not classified, of 0.02%. Xu et al. also defined system 

reliability as with DS giving a reliability measure of 99.15% overall9. 

      The NB approach had slightly lower accuracy but higher reliability with an overall recognition rate of 95.0%, a 

rejection of 5.0%, and a reliability measure of 100%. The voting method they used subsequently performed with a 

recognition accuracy of 94.3%, a rejection of 5.7%, and a reliability measure of 100%. 

       Xu et al. go on to summarize their work with some interesting observations. First, noting if the confusion 

matrices of the individual experts are well learned, then the NB formalism is typically the best combination method. 

The DS approach is robust in general and inaccurate learning does not influence the performance substantially18. 

Both DS and voting methods behaved well overall and DS was a better method if high reliability is required. In 

conclusion, Xu, Krzyzak, and Suen claim that the DS method is best overall, but other methods also provide 

performance enhancement in the domain of unconstrained digit recognition.  

      Sannen, Lughofer, and Van Brussels describe an incrementally adapting or learning ensemble framework used in 

five real-world quality inspection tasks from an industrial CD imprint production process and five data sets from a 

data repository7. The framework uses an incremental clustering method as an ensemble combination strategy, with 

Naïve Bayes, eVQ, and K-Nearest Neighbor approaches for the independent recognition algorithms. 

 

D. Multiple Input Modality Classifiers 

      Schwenker, Scherer, Schmidt, Schels, and Glodek propose a system combining different input modalities for 

improving HCI via a system that recognizes human emotional state19. Schwenker et al state that “...human emotions 

are expressed through different modalities such as speech, facial expressions, hand or body gestures...” and coupled 

with the fact that research in affective computing is in uni-modal recognition systems; a multi-modal approach 

would be more accurate and robust against outliers caused by noise or miss-recognitions. Schwenker et al propose a 

prototype system using an audio-visual laughter detection and facial expression system for human emotion 

recognition19. 

      Schwenker et al further investigated the facial detection system, building an algorithm level ensemble, using 

orientation histograms, principle components, and optical flow methods19. Each method modeled regions for 

recognition covering the face, mouth, right eye, and left eye. The twelve models where then fused using a voting 

method and a probability fusion technique.  

      The voting method performed with an 81.7% accuracy, improving on the 57.4% average rate of the individual 

component models. The probabilistic method performed slightly better than the voting method with an accuracy of 

85% over the individual models' performances19. 

      The laughter detection component utilized a Recurrent Neural Network, RNN, in order to detect laughter in 

natural conversations, consisting of a sparsely connected 1500 node network19. The RNN approach was then 

selected to provide recognition for both the audio and visual systems in the multi-modal system, however, no data 

was given to support this decision. 

      The audio and video data sets for the combined system was built using conversations between four people sitting 

around a table, recorded with a 360 degree camera and a centrally placed microphone19. The two separate RNNs, 

one for each modality, were used to detect laughter in the audio and video data, using a probabilistic fusion approach 

as the ensemble combiner. Individually, the audio and video, using the RNNs, performed with 87% and 82% 

accuracy, respectively. The system, combined, was able to detect laughter with a 91% accuracy over the two 

independent approaches. 
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      Oza and Tumer20 give a review of ensembles in real world applications. One interesting example is that of 

person recognition using an ensemble of independent classifiers from different input modalities. Oza and Tumer 

state that person recognition is historically one of the most frequent application domains for ensemble learning 

systems, and that combining diverse features into one recognizer is difficult because of scaling between the input 

methods. For instance, iris detection and classification differs from voice, which also differs from approaches 

applied to face recognition. “Ensembles consisting of individual recognizers for each modality would work better 

because they combine at the decision level where the scales would be the same.”20. 

      A multi-modal person recognition system is referenced by Oza20 and described in Erdogen et al.21. The 

application domain was vehicle driver recognition, stating the benefits of the application as: 

 Ensuring that only authorized drivers drive the vehicle. 

 Personalizing the vehicle for the driver's physical and behavioral characteristics. 

 Warning the driver and appropriate authorities if the driver is not in the proper condition to drive. 

 Allowing for secure transactions, such as banking, from within the car. 

       The independent features that are pulled for the recognition task are face, speech, and behavioral characteristics 

such as pedal and steering input. Erdogen et al. use these 3 input modalities, combining the output from each 

modality using a weighted score summation method. 

             (3) 

      Where S is the weighted sum of new scores for each validation test case, wk as fixed weights and Sk' is a sigmoid 

normalization function which maps the scores from 0 to 1: 

          (4) 

      With μ and σ being the mean and standard deviation of old scores obtained from their validation set.  

      Erdogen et al. report that separately, the recognition techniques of audio, face, and driving gave 98%, 89%, and 

88.25 % accuracy, with combination of audio and driving, face and driving, audio and face, and all three 

combinations accuracy of 99%, 98%, 99.75%, and 100% respectively9. 

 

 

E. ELARS Performance – Gesture Recognition 

Neilan9 presents overall data on the performance of a three classifier esemble system for gesture recognition using 
a pen tablet and data glove to recognize hand signed and hand written digits 0-9. Tables 2 and 3 represent the three 
different fusion techniques and there comparison to the BKS method of ensemble analysis. 

 

 

Table 2 – Data Glove9 

% MaxSum DecisionTemplate Dempster-
Shafer 

BKS 

Accuracy 97.8 83.1 85.75 98.3 

 

Table 3- Pen Tablet9 
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% MaxSum DecisionTemplate Dempster-

Shafer 

BKS 

Accuracy 62.2 7.8 34.4 62.4 

 

      As stated in Newell1, the INCA model and, by extension, ELARS perform best in a user-dependent manner 

when considering the pen tablet modality. The data glove performed well overall and provided an interesting 

modality for the small test sets were used. Performance analysis proves difficult when considering the many 

characteristics of the recognition algorithm and ensemble approaches, however, we did find that as intricate a fusion 

approach may be, as with Decision Templates and Demspter-Shafer, does not mean that they can handle inconstant 

recognition of the component classifiers in an elegant manner. We found that the MaxSum approach to label 

selection was the most accurate method using the INCA model ensemble. The BKS method performed better than 

the MaxSum by 1.4% only in the 3-algorithm test using the data glove input modality alone9. 

 

F. ELARS for Autonomous Decision Making 

      The ELARS framework has been constructed both in Java and C++ to allow for ease in development for 

researchers within the Autonomy Incubator at NASA Langley. The ELARS Java and C++ library contains the 

following classes: 

 Alphabet 

 Symbol 

 Ensemble 

 Algorithm 

 Performance Matrix 

 Confidence Vector 

      At the bottom level, the Symbol class represents an object in the recognition space, e.g. a ‘car’, ‘tree’, ‘mav’. 

The collection of Symbols makes up the recognition alphabet encapsulated in the Alphabet class. Above the 

Alphabet lies the Algorithm level that encapsulates the independent classifier methods that are intended to make up 

the Ensemble. The Performance Matrix class captures the overall performance of the individual classifiers and the 

ensemble system. The Confidence Vector subsequently uses the individual performance matrices to build the 

probability space of the ensemble and fuses the vectors given a maximum summation or a more involved fusion 

method like Dempster-Schafer to best estimate the classification result. Figure 6 depicts the Java class hierarchy. 
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Figure 6 – ELARS Java UML 

 How can ELARS help flight autonomy on a MAV? We are considering the various application domains for 

autonomous flight in the Autonomy Incubator indoor flight facility and have determined that ELARS can assist in 

these main errors: 

 System Health Assesment 

 Object Recognition 

 Collision Avoidance 

 Person Detection 

 Static/Dynamic Obstacle Identification 

Our first application domain is that of Object recognition in building a flight ontology within our local airspace. 

  

IV. Discussion 

It can be argued that multi-modal input may possibly negatively impact recognition tasks given highly conflicting 
recognition guesses from each mode. E.g vision saying an object is a ‘tree’ and the LIDAR reports a ‘moving car’. 
However, given the power of Bayesian inference and the ability of ELARS to correctly guess an object even in 
conflicting circumstances, supports our decision to continuing investigating the approach and measure it against state-
of-the-art systems flying today. 

 

G. Multi-Modalities on MAVs 

      What are some input modalities that make sense for a micro aerial vehicle, such that combining the modalities 

gives the MAV an advantage over more traditional, single sensor modality platforms? Though research is ongoing, 

in regards to state estimation and target tracking, it is clear that a mix between internal system, e.g. IMU, visual 

odometry, and external systems, e.g. GPS, Cell tower triangulation, ultra wide band radar, vision (monocular and 

stereo), LIDAR, and SONAR seem best to estimate the vehicles state, and the state of objects surrounding it. 
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      The Autonomy Incubator is currently flying quad-rotor systems with IMU, visual odometry, monocular vision, 

and multi-agent communications as input modalities into an agents decision tree for mission execution. We are also 

interested in how failures of a given modality can be mitigated by another sensor systems and/or swapping 

performance priors given modifications to the environment during mission executions. We envision that rain may 

negatively affect RADAR signals, thus another modality, such as LASER or RGB vision may better perform for a 

given mission space. Also, there could be instances of performance priors swap if we know how a sensor operates in 

a certain adverse environment, in our case a rain storm, and subsequently adjust the responses for that sensor. 

 

H. A Path to Autonomy 

As a decision framework, ELARS is a Bayesian inference model, amenable to domain transition and is 
recognition alphabet agnostic, i.e. ELARS places no constraints on application domain nor object recognition classes. 
Adaptation onto a flight vehicle as exists in the Autonomy Incubator at NASA Langley encompasses a stepwise 
procedure, starting with indoor flight operations within a constrained configuration space. 

Since the focus of autonomous flight at the Incubator consists of GPS-degraded/denied flight operations, the first 
implementation domain is naturally vision based detection and object recognition. We intend to use ELARS for both 
static and dynamic object identification, leading to better estimates on state, both external and internal, which feeds 
into the decision tree, allowing for the vehicle to better build a course of action, even if that action means flight 
termination. 

V. Conclusion 

There exists no lack of research effort in regards to detection and avoidance in all fields of UxV research. Many 

approaches are being pursued, allowing for fast image segmentation, detection and classification, and learning from 

visual markers. What is interesting about multimodality in classification tasks is that sensor modalities can 

complement each other and adjust performance characteristics given on-board sensor health and environmental 

concerns. E.g. heavy rain occluding RADAR data, and so forth. Other sensors can assist and varying performance 

matrices for certain known conditions can be swapped in real time to better support a mission task or tasks. The 

Autonomy Incubator is looking into ensemble learning in order to discover these modality characteristics, support 

mission dynamics, and enhance classification of obstacles in the sensing range of the vehicle. 

 

The described Bayesian inference approach can be used to construct an initial set of known objects (training), 

distinguish between similar yet different objects in real-time, and update the systems belief space with respect to the 

world map29. This classification is possible even in the presence of conflicting information from independent 

methods or algorithms contributing to the system wide sensing and perception capability29. 

 

 The Autonomy Incubator is pushing forward in this and other initiatives in order to develop an autonomous 

capability that is state-of-the-art and top-of-class, worldwide. 
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