CARA Threshold Types

- **Warning / remediation threshold ("Red" threshold)**
 - Pc level at which warnings are issued, and active remediation considered and usually executed

- **Analysis threshold ("Green to Yellow" threshold)**
 - Pc level at which analysis of event is indicated, including seeking additional information if warranted

- **Post-remediation threshold**
 - Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers

- **Maneuver screening threshold**
 - Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty)
CARA Thresholds Development Status

- Red and Green-to-Yellow thresholds established
 - Type 1 and Type 2 error analysis
 - Imputed workload analysis

- Post-remediation threshold methodology in work
 - Rule-of-thumb in place presently
 - Analysis avenues for more robust approach

- Approach envisioned for post-remediation threshold can also be applied to maneuver screening threshold
RED AND YELLOW-GREEN THRESHOLD DETERMINATION
The CARA “Worktier” System Defined

• System for determining how much induced work a given event commanded
 – Worktier 1: e-mail contact and follow-up with O/O
 – Worktier 2: HIE package produced and briefing delivered
 – Worktier 3: RMM planning conducted
 – Worktier 4: RMM executed

• Worktier level a good proxy for seriousness of event

• Worktier level thus used as “truth” criterion to choose red and green Pc thresholds
 – Worktier 2+ recommended as particular level to use, meaning high-risk event set defined as those with a worktier level of 2 or higher
 – Plots will, however, show performance at all four worktier levels (1+, 2+, 3+, and 4)
Worktiers and Pc Threshold Circularity

• Worktiers reasonable proxy for seriousness of event
• However, Pc levels presently used to establish seriousness
 – Thus, must be careful in using historical worktier data to set Pc levels—easy to devolve into circular argumentation
• Original examination used dataset from period before Pc thresholds established and in place
 – Thus legitimate dataset from which to establish threshold set
• For this reason, updates to original values no longer easily achievable through data mining
Exploratory Analysis: Event Maximum Pc as Predictor of WorkTier

• How good a predictor of the eventual work tier assignment is the maximum Pc during the event?
• Examined all events in 2011-2013
• One graph for each work tier
 – Quad-chart format shows results for each cumulative worktier level
• False alarm rate (blue line): % of cases in which the Pc indicated a serious event but the event was actually not high-risk
 – Also called a “type 1” error, and is a nuisance factor
• Missed detection rate (green line): % of cases in which the Pc indicated a non-high-risk situation but the event actually was high risk
 – Also called a “type 2” error, and is the more serious error type
Event Maximum Pc as Predictor of Worktier: Results

Type 1 and 2 Errors for Predicting Worktier 1+ Events

Type 1 and 2 Errors for Predicting Worktier 2+ Events

Type 1 and 2 Errors for Predicting Worktier 3+ Events

Type 1 and 2 Errors for Predicting Worktier 4+ Events
Event Maximum Pc as Predictor of Worktier: Interpretation of Results

- Interpretive questions center on tolerable levels for the type 1 and type 2 errors
- **Type 2 error rates**
 - 0.01% to 0.1% for a 1E-05 to 1E-03 Pc threshold range—quite small
 - Events that are just below the red threshold can be promoted manually red and thus be processed as HIEs
- **Type 1 error rates**
 - Range from 10% to 0.5%--again, not very large and seemingly tolerable
- **Overall construct thus looks promising**
Individual Event CDMs as Predictor of Worktier

• A typical event consists of a chain of CDMs from 7 days to 1-2 days from TCA
• These usually begin with a smallish Pc value and increase to a maximum, then decrease somewhat rapidly
• Question now is how well each pre-max Pc value will predict the eventual worktier level of the event
 – This is the way CONOPS will actually operate
• Certain to perform worse than using only the max Pc value as a predictor
 – But may still perform quite adequately for CONOPS purposes
Individual Event OCMs as Predictor of Worktier: Results

Type 1 and 2 Errors for Predicting Worktier 1+ Events

Type 1 and 2 Errors for Predicting Worktier 2+ Events

Type 1 and 2 Errors for Predicting Worktier 3+ Events

Type 1 and 2 Errors for Predicting Worktier 4+ Events

False Alarm Rate
Missed Detection Rate
Individual Event OCMs as Predictor of Worktier: Interpretation

- As expected, performance is worse with this arrangement
- Type 2 error rates higher
 - These are between 0.5% and 1% for the 1E-05 to 1E-03 range
 - Not blissfully low, but not particularly surprising or disturbing given what is being attempted
 - Initial relatively low Pc values in an event not readily predictive of event destiny
 - Consequence is not a missed event, only that event will not be caught as early
 - Curve relatively flat, especially below 1E-04
 - Very little marginal gain from choosing a lower threshold (e.g., 1E-05)
- Type 1 error rates not very different from previous
 - Not surprising, given typically lower Pc values at the beginning of events
 - Rare that early-event Pc would exceed red threshold, not be the maximum Pc, and then drop sufficiently quickly that event would not remain an HIE
Green-To-Yellow Threshold

• Idea is to set a lower bound on Pc so that events with a Pc below this threshold will almost never become high-risk events

• Type 1 error: Pc is above this threshold but never becomes high risk
 – Not really a false alarm, as it is expected that the great majority of non-green Pc values will remain yellow and never become high risk events
 – However, to maintain parallelism with construct used for setting red threshold, appropriate to label it a Type 1 error

• Type 2 error: Pc is below this threshold but becomes high risk
 – Even here, the problem is not particularly serious: events are not missed but just have their true severity discovered somewhat later

• Investigate against all pre-max-Pc OCMs in each event
Green Threshold Performance:
Pre-max-OCMs in each Event

Type 1 and 2 Errors for Predicting Worktier 1+ Events

Type 1 and 2 Errors for Predicting Worktier 2+ Events

Type 1 and 2 Errors for Predicting Worktier 3+ Events

Type 1 and 2 Errors for Predicting Worktier 4+ Events

False Alarm Rate
Missed Detection Rate
Green Threshold Performance: Interpretation

• **Type 2 error performance**
 – Stable at 0.015% for 1E-08 to 1E-06
 – Numbers quite low

• **Type 1 error performance**
 – Ranges from 30% to 20%
 – Numbers seem high, but actually have little significance
 • Essentially # of yellow events that never become red—this is expected
 Concurrent Events

• If an event’s Pc exceeds the red threshold, it becomes an HIE
 – Usual dynamics is for the event to remain at this level until TCA
• Can thus determine the number of concurrent HIEs implied by a particular red threshold
 – # of concurrent HIEs per day over the 2011-2013 period
 – Summarized by 50th, 68th, and 95th percentiles
 – Separate lines for all satellites and maneuverable satellites only
• Graph on next slide
Concurrent Events Plot

Concurrent HIE Events as a Function of Red Pc Threshold

of Concurrent Events

Red Pc Threshold

50ile All
68ile All
95ile All
50ile Maneuver Only
68ile Maneuver Only
95ile Maneuver Only
Concurrent Events: Interpretation

- Workload becomes problematic around 5E-04 with current staffing
- Must also consider imputed workload on missions with more frequent HIEs
Satellite Lifetime Conjunction Risk

• Aerospace study developed factor for satellite lifetime conjunction risk calculation
 – 1E-08 per 10 m² of spacecraft projected area per day
 – Based on older version of ORDEM and not orbit regime dependent, so a durable result would require re-execution of the study
 – However, factor can be used to produce results to provide orientation

• Contour plot gives composite satellite conjunction risk as a function of spacecraft size and years on orbit
 – Colors represent log10(Ph)
Lifetime Conjunction Risk Contour Plot

Lifetime Payload Conjunction Risk Against All Objects > 1cm

Time on Orbit (years) vs Payload Projected Area (m²)
Satellite Lifetime Conjunction Risk: Interpretation

• Satellites with a reasonable lifetime on orbit (~10 years) and a non-trivial size (~4m²) have a lifetime conjunction risk of ~3E-04
• Does not make sense to remediate conjunctions with a risk much smaller than this
Overall Summary

- Analysis does not point to single value for red or green threshold
- However
 - Region between 1E-04 and 5E-04 seems to be a reasonable choice for red threshold
 - Type 2 error rates OK (0.05% or so)
 - Type 1 error rates OK also (~5%)
 - Not much improvement in situation in choosing a smaller threshold
 - Type 2 error curves relatively flat
 - Workload, however, does increase substantially when smaller threshold chosen
 - Smaller thresholds begin to approach lifetime conjunction risk values, most of which is due to untrackable small debris
- CARA ~4E-04 choice, while not made inevitable by this analysis, is reasonably supported by it
POST-MANEUVER THRESHOLD DETERMINATIONS
• Current recommendation is to choose maneuver to reduce cumulative Pc to 1E-10
 – Rule of thumb that has arisen over the years
 – Intent is essentially to eliminate need for follow-up maneuver because original maneuver inadequately sized
• Many missions now push back against this conservative value
 – Can put missions outside of control box
 – Even if executable, can consume large amount of fuel
 – No rigorous justification at present for value
• Sketch of expected approach to resolution to follow
Pc Uncertainty and Post-Maneuver Remediation

• Pc Uncertainty construct pursued by CARA for years; briefed recently at AAS (paper 16-241)
• Considers all of the uncertainties in the input parameters to generate a PDF of Pc values, rather than a single value
• Can use to determine likelihood of obtaining a Pc of a certain value or higher at a given percentile point
 – E.g., 5% or lower chance that the Pc will exceed 1E-04
• Can incorporate into Maneuver Trade-Space functionality
 – Function presently produces contour plot of Pc as a function of maneuver size and maneuver execution time (phasing)
 – Pc uncertainty can be used instead to give the likelihood of the post-maneuver Pc exceeding a specified threshold
 • Perhaps 4.4E-04 or 1E-05 (red and maneuver planning thresholds)
 • Graph could show likelihood of Pc exceeding 1E-05; perhaps choose 2% or less
 – Frames output in terms of likelihood of post-maneuver high risk
 – Works best if maneuver execution error incorporated into construct
CARA Maneuver Screening Threshold

• Same approach as for RMM sizing can be used
• Both canonical threshold and percentile point could be different
• Setting of percentile points can be informed by regular operational practice
 – i.e., percentile point to be used when evaluating red threshold under regular conditions