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ABSTRACT: This and a companion paper propose techniques for constructing parametric mathematical mod-
els describing key features of the distribution of an output variable given input-output data. By contrast to stan-
dard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs)
yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a
polynomial dependency on the input and a linear dependency on the parameters are proposed. These formula-
tions yield RPMs having various levels of fidelity in which the mean, the variance, and the range of the model’s
parameter, thus of the output, are prescribed. As such they encompass all RPMs conforming to these prescrip-
tions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on
the formulation, most) of the observations are less than a fixed number of standard deviations from the mean
prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calcu-
late the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the
model’s reliability, which is the probability that a future observation would be within the predicted ranges, is
bounded rigorously.

1 INTRODUCTION

It is assumed the reader is familiar with the content
of the companion paper (Crespo et al. 2015). The in-
troduction, and literature review therein apply to this
paper as well but have been omitted here due space
limitations. Whereas (Crespo et al. 2015) focuses on
Type-1 and Type-2 RPMs, this paper focuses on Type-
3 and Type-4 RPMs. The overlap between the papers
has been kept to a minimum.

2 PROBLEM STATEMENT

A system is postulated to act on a vector of input vari-
ables x to produce an output y. The output can de-
pend on the state variables and on some other influ-
ences, causing, for instance, intrinsic variability. Let
X ⊆Rnx be a set of input variables, and Y ⊆Rny be a
set of outputs which might result from the system act-
ing on elements of X . In the following, the focus will
be on the single-output (ny = 1) multi-input (nx ≥ 1)
case. In this setting the two main problems of interest
can be stated as follows. Let z= {zi}= {(xi, yi)}, for
i= 1, . . . ,N , be a sequence of observations generated
by a Data Generating Mechanism (DGM). First, we
want to find an empirical model that, when evaluated
at a new value xN+1 of the state, returns an informa-
tive prediction of the unobserved output yN+1. An in-

formative prediction can be interpreted as a prediction
that is consistent with salient features of the data com-
prising z. These features, which are cast by the ana-
lyst as design requirements on the RPM (for example,
we might want all observed outcomes to be less than
2-standard deviations from the mean prediction), are
cast as inequality constraints in the optimization prob-
lems used to calculate the model. Second, we want to
quantify the probability that yN+1 is compliant with
such requirements. To continue the example, we want
to evaluate the probability that yN+1 is less than 2-
standard deviations away from the mean prediction.

3 INTERVAL PREDICTOR MODELS

This section introduces concepts from Interval Pre-
dictor Models (IPM) that are essential for RPMs. Ad-
ditional information on IPMs and examples are avail-
able in (Crespo et al. 2014). An IPM is simply a map-
ping that assigns an output interval for each value of
the input. In the context of this paper, an IPM assigns
to each input vector x ∈ X a corresponding outcome
interval in Y . A parametric IPM is obtained by associ-
ating to each x ∈X the set of outputs y corresponding
to all values of p in P :

Iy(x,P ) = {y = p>ϕ(x), p ∈ P}, (1)



where ϕ(x) is a vector of monomials, and

P = {p : p ≤ p ≤ p}. (2)

The analyst is free to choose which monomials are
relevant to the particular application. A general repre-
sentation of a multivariate polynomial basis is

ϕ(x) =
[
1, xi2 , xi3 , . . . , xin

]>
, (3)

where x = [x1, . . . , xnx ] is the state, and the vector
ij = [ij,1, . . . , ij,nx ], with ij 6= ik for j 6= k has the ex-
ponents of the monomials.

The limits of the IPM prescribed by (1-3) can be
explicitly computed as

Iy(x, p, p) =
[
y(x, p, p), y(x, p, p)

]
, (4)

where

y(x, p, p) = ϕ(x)>
(
p+ p

2

)
− ϕ(|x|)>

(
p− p
2

)
(5)

y(x, p, p) = ϕ(x)>
(
p+ p

2

)
+ ϕ(|x|)>

(
p− p
2

)
(6)

Therefore, the envelopes of the interval valued func-
tion Iy, are linear functions of p and p, and piecewise
polynomial functions of the input. The spread of Iy,
which is the separation between its limits, is

δy(x, p, p) = ϕ(|x|)>(p− p). (7)

Note that the spread depends on the size of the un-
certainty box P , but is independent of its geometric
center.

Commonly, the DGM is approximated by the Least
Square (LS) prediction, y = p>LSϕ(x), where pLS is
given by

pLS = (A>A)−1A>[y1, . . . , yN ]
>, (8)

Ai,j = ϕj(xi), for i = 1, . . . ,N and j = 1, . . . , np.

3.1 Type-1 IPMs

A Type-1 IPM is given by Equations (1-3) where P
is the solution to the following Optimization Problem
(OP).
Optimization Problem 1 (OP1): The limits of P are given
by〈
p̂, p̂
〉
= argmin

pb, pa

{Ex[δy(x, pb, pa)] : pa ≤ pb,

y(xi, pb, pa) ≤ yi ≤ y(xi, pb, pa)
}
, (9)

where Ex[·] is the expected value operator with re-
spect to the input x, and (xi, yi) for i = 1, . . . ,N are
the observations in z.

Therefore, a Type-1 IPM yields a P that minimizes
the expected interval spread such that all the observed
outputs are within Iy(x). When x is a random vector
of known distribution, the cost function in (9) can be
calculated analytically. Otherwise, the sample mean
based on the data can be used to approximate it. The
resulting IPM, which is calculated by solving the con-
vex optimization problem in (9), admits a rigorous
reliability assessment (see Section 5). This assess-
ment quantifies the probability that a future observa-
tion will fall within Iy(x).

The membership of pLS in P can be ensured by
replacing the first constraint with pa ≤ pLS ≤ pb,
or adding the constraint pa + pb = 2pLS. In general,
the inclusion of these constraints leads to IPMs with
larger expected spreads, with the equality constraint
leading to the larger of the two. A formulation result-
ing from adding either of these two sets of constraints
will be called Augmented.

4 RANDOM PREDICTOR MODELS

A RPM is a mapping that assigns to each input vector
x ∈ X a corresponding random variable in the output
space Y . That is, an RPM is a random variable-valued
map

R : x→ Ry(x) ⊆ Y, (10)

where x is the input, and Ry(x) is a random process
whose support lies in Y . A parametric RPM is ob-
tained by associating to each x ∈X the set of outputs
y corresponding to all values of p described by a ran-
dom vector with joint Cumulative Distribution Func-
tion (CDF) Fp(p) having the support set P . As before,
attention will be limited to the case where the output
is a linear function of the parameter p, and a polyno-
mial function of x. This leads to

Ry(x) = {y = p>ϕ(x), p : Fp(p), p ∈ P}. (11)

Denote by µ ∈ Rnp , ν ∈ Rnp , and c ∈ Rnp(np−1)/2 the
mean, variance and correlation of p respectively. The
variance and correlation fully prescribe the covari-
ance matrix C(ν, c) ∈ Rnp×np . It can be shown that
any random vector with a support set P as in (2) must
satisfy the consistency equations:

p ≤ µ ≤ p, (12)

0 ≤ ν ≤ (µ− p)� (p− µ), (13)

−1 ≤ c ≤ 1, (14)

C(ν, c) � 0. (15)



The symbols � and � denote the component-wise
product of vectors, and positive semidefiniteness re-
spectively.

The random process Ry(x) is fully prescribed by
the CDF of p. Naturally, statistics of the output y,
such as the mean µy(x) = Ep[y(x, p)], the variance
νy(x) =Ep[(y(x, p)−µy(x))2], and the range Iy(x) =
[minp y(x, p),maxp y(x, p)], vary with x. In particu-
lar, the mean prediction is µy(x,µ) = µ>ϕ(x), the
output’s variance is

νy(x, ν, c) = ϕ(x)>C(ν, c)ϕ(x), (16)

and the output’s range is the interval value function
(4). When the components of p are uncorrelated, (16)
reduces to1

νy(x, ν) = ν>ϕ2(x). (17)

A few metrics for characterizing Ry(x) are intro-
duced next. The σ-surface, which connects all the out-
puts y that are τ standard deviations from the mean
prediction, is defined by

l(x,µ, τ, ν, c) = µ>ϕ(x) + τ
√
νy(x, ν, c). (18)

The σ-volume, defined as

Iσ(x,µ, τ, ν) = [l(x,µ,−τ, ν, c), l(x,µ, τ, ν, c)] , (19)

contains all the outputs y that are no more than τ stan-
dard deviations away from µy(x). For the value of τ
to be feasible (i.e., for the σ-surface to be within the
support of Ry(x)), it must satisfy

y(x, p, p) ≤ l(x,µ, τ, ν, c) ≤ y(x, p, p). (20)

Equation (20) ensures that the support of the process
contains outcomes that are up to τ standard deviations
from the mean prediction. Note that the range of stan-
dard deviation values satisfying these inequalities is a
function of x.

The formulations that follow prescribe key statis-
tics of p, thus of the random output y(x), based on
input-output data. As such they encompass all RPMs
that conform to these statistics. Four types of RPMs
are proposed. Type-1 RPMs and Type-2 RPMs, cov-
ered in detail and exemplified in (Crespo et al. 2015),
prescribe the mean and variance of p. Conversely,
Type-3 and Type-4 RPMs also prescribe the range
of the output. Whereas Type-3 RPMs emphasize the
tightness of the outputs’ range, Type-4 RPMs em-
phasize the tightness of the σ-volume. In contrast to
Type-1 and Type-2 RPMs, which only require solving
a single OP, Type-3 and Type-4 RPMs require solv-
ing a pair of interdependent OPs. The formulations
below only consider c = 0. Extensions to the corre-

1When the correlation c is zero, the corresponding argument
of any function depending on it will be dropped.

lated case can easily be made. Furthermore, the selec-
tion of µ as pLS is arbitrary, and any other value can
be used. In the developments that follow, the Perfor-
mance of an RPM refers to the property evaluated by
the cost function in the corresponding OP. The section
that follows covers the essentials of Type-1 RPMs and
Type-2 RPMs needed to calculate Type-3 and Type-4
RPMs.

4.1 Type-1 RPMs

Type-1 RPMs prescribe the mean and variance of
Ry(x) when the entire data set in z is used. A Type-1
RPM is given by Equations (3, 11), where p is a vector
of uncorrelated random variables with expected value
µ = pLS , and a variance ν = ν̂, given by the solution
to the following program.

Optimization Problem 2 (OP2): The variance of p is
equal to

ν̂ = argmin
ν≥0

{Ex[νy(x, ν)] : l(xi, µ,−σmax, ν) ≤ yi ≤

l(xi, µ, σmax, ν) for i = 1, . . . ,N} , (21)

where σmax > 0 is a parameter prescribed by the ana-
lyst, and (xi, yi) for i = 1, . . . ,N are the observations
in z.

Hence, a Type 1-RPM minimizes the expected vari-
ance of the random process Ry(x) such that all ob-
servations are no more than σmax standard deviations
away from the mean prediction, i.e., all observations
are within the σ-volume Iσ(x,µ,σmax, ν̂).

Note that both Type-1 IPMs and Type-1 RPMs re-
quire solving a convex OP. As such they can effi-
ciently handle hundreds of thousands of data points,
thus of input dimensions. This is in sharp contrast
to Gaussian Processes which are limited to a few
thousand data points before becoming numerically in-
tractable.

A Type-1 RPM does not prescribe the support of p,
thus, ofRy(x). Any random vector satisfying the con-
sistency Equations (12-15) for µ = pLS and ν = ν̂ is
a valid characterization of Fp(p). Since Type-1 RPMs
are calculated by solving a convex OP, they admit a
rigorous reliability assessment. This assessment, pre-
sented in Section 5, quantifies the probability that
a future observation will fall within the σ-volume
Iσ(x,µ,σmax, ν̂).

4.1.1 Outliers in the Data Set
The presence of outliers in the data yields undesirably
large σ-volumes and uncertainty sets, diminishing the
RPMs performance. Whereas the limits of the optimal
Iσ might be prescribed by a few observations, the ma-
jority of them might be much closer to the mean pre-
diction. The outliers, whose removal from the data set



will lead to smaller predicted variances, can be iden-
tified using anyone of several figures of merit. This
paper will use the figure of merit

κi(µ, ν, c) =

(
yi − µ>ϕ(xi)

)2
νy(xi, ν, c)

, (22)

where ν is the variance of p. κi is a variance-
normalized distance squared between the ith observed
output and the mean prediction at the corresponding
input. Outliers will be identified by determining the
data points corresponding to the largest percentiles of
the empirical CDF of κ, Fκ(ν̂)(κ), for i = 1, . . . ,N ,
i.e., (xi, yi) is an outlier if Fκ(ν̂)(κi) > λ where 0�
λ < 1. Once the outliers are identified, they can be
removed from the data sequence and a new Type-1
RPM will be calculated. The resulting RPM will at-
tain tighter predictions for λ fraction of the observa-
tions in z, while the prediction for the remaining 1−λ
fraction might be considerably degraded. The outliers
found by this procedure will be the same regardless of
the value of σmax.

4.2 Type-2 RPMs

A formulation leading to an alternative RPM is pre-
sented next. In contrast to Type-I RPMs, this approach
searches for ν by using only a fixed percentage of the
N observations available. The observations compris-
ing the removed set are worst-case in the sense that
their removal tightens the optimal σ-volume the most.

In particular, a Type-2 RPM is given by Equations
(3, 11), where p is a vector of uncorrelated variables
with expected value µ = pLS, and a variance ν = ν̂
given by the following OP.

Optimization Problem 3 (OP3): The variance of p is

ν̂ = argmin
ν≥0

{
Ex[νy(x, ν)] : Fκ(ν)

(
σ2

max

)
≥ λ

}
, (23)

where σmax > 0 is a parameter prescribed by the an-
alyst, Fκ(ν) is the empirical CDF of κ(ν) in (22)
based on the N observations in z, and 0 < λ ≤ 1,
another parameter to be chosen by the analyst, is
the proportion of observations to be contained by
Iσ(x,µ,σmax, ν̂(λ)).

Hence, a Type-2 RPM minimizes the expected vari-
ance of the random process Ry(x) such that a λ frac-
tion of the observations are no more than σmax stan-
dard deviations apart from the mean prediction. The
tightening of the prediction for such a fraction yields
a σ-volume Iσ(x,µ,σmax, ν̂(λ)) that does not enclose
the remaining 1− λ fraction. This shows that (23) is
a chance-constraint formulation (Charnes et al. 1958),
in which one is willing to accept the occurrence of un-
favorable low-probability events (probability 1 − λ)
for the sake of an improved performance for high-
probability events (probability λ). As with Type-1
RPMs, σmax is essentially a scaling factor.

OP3 is a non-convex formulation, which for λ =
1 yields the same RPM as OP2. When λ < 1,
a fixed number of observations (outliers) are ne-
glected as the RPM is being calculated. Outliers
can be easily identified by finding the data points
for which Fκ(ν̂) (κi(ν̂)) > λ. The points not satis-
fying this condition, which are the elements of z
within Iσ(x,µ,σmax, ν̂(λ)), constitute the sequence w.
A Type-1 RPM based on the data sequence w is equiv-
alent to the Type-2 RPM in (23) based on the data
sequence z. This relationship enables performing a
reliability assessment of Type-2 RPMs. This assess-
ment, presented in Section 5, formally quantifies the
probability that a future observation will be within
Iσ(x,µ,σmax, ν̂(λ)).

4.3 Type-3 RPMs

Type-3 RPMs not only prescribe the mean and vari-
ance of p, thus of Ry(x), but also their ranges. Type-3
RPMs optimize the tightness of both the range of the
output, and of the σ-volume prioritizing the former. In
contrast to Type-1 and Type-2 RPMs, the calculation
of a Type-3-RPM entails solving a sequence of two
OPs.

A Type-3 RPM is defined by Equations (3, 11),
where µ is given by the LS parameter estimate in (8).
The support set P is prescribed by an Augmented ver-
sion of (9), and the variance ν is the solution to the
following OP:

Optimization Problem 4 (OP4): The variance of p is

ν̂ = argmin
0≤ ν≤ νmax

{
Ex[νy(x, ν)] : Fκ(ν)

(
σ2

max

)
≥ λ

}
, (24)

where νmax = (µ− p̂)� (p̂− µ), p̂ and p̂ are given by
(9), and Fκ(ν) is the empirical CDF of κ(ν) in (22)
based on the N observations in z. The parameters
σmax and λ, to be set by the analyst and defined earlier,
must satisfy

σmax > σ∗max = max
1≤i≤N

{
|yi − µ>ϕ(xi)|√

ν>maxϕ
2(xi)

}
, (25)

and 0 < λ ≤ 1.

Hence, a Type-3 RPM minimizes the expected vari-
ance of the random process Ry(x) given that (i) the
σ-volume associated with σmax contains a λ fraction
of the observations, (ii) the relationships among the
mean, the variance and the support set satisfy the con-
sistency Equations (12-15), and (iii) the range of out-
puts Iy(x) has minimal expected spread while con-
taining all N observations. While Augmented OP1 is
convex, the first inequality constraint in (24) makes
OP4 non-convex. Notice that extreme observations
prescribe the support set P in OP1, whereas the
floor(Nλ) observations attaining the smallest κi val-
ues prescribe ν̂ in OP4.



The solution to (9) enters (24) via the upper bound
on ν, νmax. The constraint (25) ensures the feasible
design space is non-empty. The ith component of the
vector at the right hand side of (25) is the value of τi
for which yi = l(xi, µ, τi, νmax). Hence, τi is the small-
est number of standard deviations that can separate
(xi, yi) from the mean prediction without letting ν ex-
ceed νmax.

When λ = 1, the constraints in (24) can be writ-
ten as a set of convex constraints. When λ < 1, the
constraints in (24) are equivalent to a subset of the
convex constraints. This subset is given by all the ele-
ments in z satisfying Fκ(ν̂)(κi) ≤ λ. The floor(Nλ)
observations satisfying this condition constitute the
data sequence w. Therefore, OP4 based on the data
sequence z renders the same empirical model as a
convex-program based on the data sequence w. This is
the basis used for evaluating the reliability of Type-3
RPMs. To this end (See Theorem 2), it is useful to de-
termine if Iσ(x,µ,σmax, ν̂(λ))⊆ Iy(x, p̂, p̂) holds, i.e.,
the σ-volume associated with σmax is within the range
of Ry(x). This is the case if and only if the Contain-
ment Condition

ϕ(|x|)>(p̂− p̂)− |ϕ(x)>(p̂+ p̂− 2µ)|−

2σmax

√
ν̂>ϕ2(x) ≥ 0, (26)

holds for all x ∈ X . This semi-infinite constraint can
be evaluated rigorously using Bernstein polynomials
and interval analysis. Type-3 RPMs satisfying (26) al-
low for a tighter reliability assessment. Enforcing this
condition by design requires incorporating (26) into
(24). This practice, however, will not be considered
in this paper.

Note that Type-3 RPMs for the case in which λ= 1
can be found by solving a sequence of two convex
OPs. This structure allows considering problems with
hundreds of thousands of observations. In such a case
outliers can be dealt with by identifying them and re-
moving them from the data sequence in advance as
explained in Section 4.1.1.

Example 1: Two Type-3 RPMs based on the same
data sequence used in (Crespo et al. 2015) are
derived next. Whereas the two RPMs differ in
the value of λ used to calculate ν̂, both use the
same set P . This set is calculated via an Aug-
mented OP1 with p ≤ pLS ≤ p. This leads to
p̂ = [−12.9837,−1.1488,−0.8339,0.0013,−0.0379,
−0.0001,0.0032]>, and p̂ = [7.2080,−1.1488,
−0.8339,0.0013,−0.0379,−0.0001,0.0034]>. These
values, in turn, yield an upper bound for ν where the
only significant component is νmax,1 = 90.8037. This
IPM’s performance is Ex[δy] = 10.4942. The bound
on σmax resulting from (25) yields σ∗max = 1.4094.
Thus, we selected σmax = 1.5.

A Type-3 RPM for λ = 1 is calculated first. There-
fore, we require that all 150 observations be no more
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Figure 1: RPM D: Type-3 RPM for σmax = 1.5 and λ = 1.

than 1.5 standard deviations from the mean predic-
tion. The resulting RPM, to be referred to as RPM D,
leads to a variance ν̂ for which the only significant
term is ν̂1 = 80.1699. The performance of RPM D is
given by both Ex[δy] = 10.4942 and Ex[νy]≈ ν̂1. Fig-
ure 1 shows RPM D. Whereas the limits of the range,
Iy(x), are shown as dashed lines, σ-surfaces separated
by 0.5 units are shown as dashed-dotted lines. Note
that the augmented constraint yielded a skewed ran-
dom process with respect to its mean prediction. Fur-
ther notice that the lower limit of the support coin-
cides with the σ-surface associated with σ = −1.5,
whereas the values of σ reaching the upper limit of
the range vary. Even though the portions of the σ-
surfaces spreading outside Iy(x) are infeasible (e.g.,
almost the entire σ = 1.5 surface), they have been
plotted for clarity. The feasible range of σ values at
each value of x is given by (20). Because the majority
of the observations are close to the mean prediction,
we can expect that neglecting a few extreme obser-
vations will considerably improve the model’s perfor-
mance.

A Type-3 RPM for λ = 143/150 is derived next.
Therefore, we require that 143 observations be no
more than 1.5 standard deviations from the mean pre-
diction. This model, to be referred to as RPM E, leads
to a variance ν̂ for which ν̂1 = 22.2497 is the only
significant term. This indicates that the CDF of p cor-
responding to RPM E is about four times more con-
centrated about the mean than that of RPM D. The
performance of RPM E is given by Ex[δy] = 10.4942
as before, and by Ex[νy] ≈ ν̂1. In terms of the latter
metric, RPM E is 72% better than RPM D. Figure 2
shows σ-surfaces corresponding to RPM E. The same
line conventions used before apply. A comparison be-
tween Figures 1 and 2 indicates that RPM E yields a
tighter probabilistic description for 100λ% of the ob-
servations than RPM D. The containment condition
in (26), which will be required to calculate the mod-
els’ reliability, is s not satisfied for either RPM D or
RPME. This is reflected in Figures 1 and 2, where the
σ-surface corresponding to σmax is above y(x, p̂, p̂) for
some x in X .

The sequential construction of a Type-3 RPM,
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Figure 2: RPM E: Type-3 RPM for σmax = 1.5 and λ= 143/150.

where the variance ν is solved for after solving for the
support set P , restricts its probabilistic performance
(i.e., the variance is calculated given an optimal sup-
port set). This restriction manifests in the lower bound
(25) to admissible values of σmax. A sequential ap-
proach reversing the priority order is presented next
(i.e., P is calculated given an optimal variance).

4.4 Type-4 RPMs

A Type-4 RPM is given by by Equations (3, 11),
where the expected value µ is given by the LS so-
lution in (8), the variance ν is given by (23), and the
support P is given by the following OP.

Optimization Problem 5 (OP5): The support set P of the
random vector p, having expected value µ and vari-
ance ν̂(σmax, λ), is given by

〈p̂, p̂〉 =argmin
pb, pa

{Ex[δy(x, pb, pa)] : pa ≤ µ ≤ pb,

y(xi) ≤ yi ≤ y(xi) for i = 1, . . . ,N,

ν̂ ≤ (µ− pa)� (pb − µ)} . (27)

Hence, a Type-4 RPM minimizes the expected
spread of the random process given that (i) P con-
tains µ, (ii) the range contains all the observa-
tions, (iii) the relationship between ν̂ and P satis-
fies consistency condition (13), and (iv) the σ-volume
Iσ(x,µ,σmax, ν̂(λ)) contains 100λ% of the observa-
tions. Note that the solution to OP3 enters into OP5
via the lower bound of the last constraint. Further
notice that OP3, used to calculate ν̂, is non-convex,
whereas OP5, used to calculate P , is convex. This
is the case even though the feasible design space as-
sociated with the bilinear constraints in (27) is non-
convex. The equivalence between OP3 and OP2 cov-
ered in Section 4.2, allows performing a rigorous reli-
ability analysis of Type-4 RPMs. This analysis quan-
tifies the probability that a future observation will be
inside both the σ-volume Iσ(x,µ,σmax, ν̂(λ)) and the
range Iy(x, p̂, p̂). As before, the containment condi-
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Figure 3: RPM F: Type-4 RPM for λ = 1 and σmax = 1.

tion in (26) plays a key role in the evaluation of the
model’s reliability.

Example 2: Next we derive two Type-4 RPMs for
σmax = 1 and the same data used earlier. The two
RPMs differ in the value of λ used to calculate ν̂. Be-
cause σmax < σ∗max = 1.4094, there is no Type-3 RPM
able to satisfy this requirement. This illustrates the
limitations on the probabilistic performance resulting
from Type-3 RPMs.

The first RPM, to be referred to as RPM F,
uses λ = 1. Hence, we will require that all
150 observations will be less than one standard
deviation from the LS prediction. The only sig-
nificant term in the solution is ν̂1 = 180.3824.
With ν̂ available, we then solve for p̂ and p̂ us-
ing (27). This leads to a support set with limits
p̂ = [−12.9981,−1.1488,−0.8339,0.0012,−0.0379,
−0.0006,0.0032]>, and p̂ = [13.8920,−1.1488,
−0.8339,0.0012,−0.0379,0.0001,0.0032]>. There-
fore, whereas the first and sixth component of p vary
in a range, the other ones can be treated as fixed
constants. The performance of RPM F is given by
both Ex[νy] = 180.3824 and Ex[δy] = 13.4714, which
are 1620% larger and 83% smaller than those of RPM
D. Figure 3 shows RPM F. Note that the containment
condition Iσ ⊆ Iy holds for all x ∈X . The σ-volumes
and limits of Iy appear to be centered about the LS
prediction. This is not the case for other values of
σmax (not shown). Because most of the observations
are close to the mean prediction, it is natural to expect
that neglecting a few observations will considerably
improve the model’s performance.

We now derive a Type-4 RPM for λ = 143/150.
The solution to OP3 indicates that the most signif-
icant variances are ν̂1 = 6.3378, and ν̂2 = 3.1509.
With ν̂ available, we then now solve for p̂ and p̂
using (27). OP5 yields a support set P with limits
p̂ = [−10.2605,−3.8559,−0.8480,0.0002,−0.0420,
−0.0002,0.0032]>, and p̂ = [2.9670,0.016,
−0.8200,0.0022,−0.0338,−0.0001,0.0032]>.
Therefore, according to their ranges’ size; the first,
second and fifth components of p contribute the most
to the spread in the predicted output. The perfor-
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Figure 4: RPM G: Type-4 RPM for λ = 143/150 and σmax = 1.

mances of the resulting empirical model, shown in
Figure 4 and called RPM, are Ex[νy] = 36.3341 and
Ex[δy] = 12.3649. These values are 246% larger and
39% smaller than those of RPM E, respectively. The
containment condition Iσ ⊆ Iy, which will be used
to quantify the models reliability, does not hold at
x = 0 (not seen in Figure 4). The support set of the
CDF of p1 is not centered about its mean value of
−0.8734 (Crespo et al. 2015). This causes a sizable
offset between the mean prediction and the midpoint
function (y(x) + y(x))/2. Further notice that the
high-probability region of the random process con-
tains most of the observations whereas the outliers
only affect Iy(x). The limits Iy(x), which have a
derivative discontinuity at x= 0, do not coincide with
any σ-surface. As expected, the comparison of RPM
D with RPM F; and of RPM E with RPM G, indicate
that the improvements in probabilistic performance
Ex[νy] cause a degradation of the non-probabilistic
performance Ex[δy].

5 MODEL’S RELIABILITY

This section presents a framework for rigorously eval-
uating the reliability of the predictor models proposed
above. The reliability of model E , r(E), is the proba-
bility that a future observation will be compliant with
the requirements imposed upon the calculation of the
model. These requirements are cast in terms of an out-
put y belonging to a σ-volume Iσ(x) for Type-1 and
Type-2 RPMs, and also to the range Iy(x) for Type-3
and Type-4 RPMs. The developments that follow are
based on the Scenario Approach (Calafiore & Campi
2006).

Denote by P the unknown distribution of the DGM
from which the points of the data sequence z are ob-
tained. P can be interpreted as a probabilistic cloud
in the X × Y -space. The case in which y is a deter-
ministic function of x only is a particular case where
P is concentrated over the function. A general P can
accommodate situations where the fluctuation in the
output y is caused by sources other than x. No as-
sumption is made on P so that the functional form

relating x and y can be arbitrary. The following the-
orem, taken from (Campi et al. 2009), permits quan-
tifying the reliability of an empirical predictor model
whenever the OP used for its calculation is convex.

Theorem 1 : Let z = {zi} = {(xi, yi)}, for i =
1, . . . ,N , be an independent data sequence resulting
from a stationary discrete-time data generating pro-
cess. Suppose the model E is calculated by solving
a convex constrained optimization problem having a
unique solution. Furthermore, assume that k obser-
vations (outliers) out of the N available have been
discarded when calculating the model. Then, for any
ε ∈ (0,1) and assuming k < N − d, where d is the
number of optimization variables used to calculate E ,
it holds that

ProbPN [r(E) ≥ 1− ε] > 1− β, where (28)

β =
N !(1− ε)N−d

(N − d)!d!

k∑
i=0

(N − d)!
(N − d− i)!i!

εi

(1− ε)i
. (29)

The reliability of Type-1 IPMs, to be denoted as I,
is defined as

r(I) = ProbP
[
(x, y) ∈ Iy

(
x, p̂, p̂

)]
. (30)

The convexity of the OP1 enables the direct applica-
tion of Theorem 1. The reliability of Type-1 and Type-
2 RPMs, denoted byR, is defined as

r (R) = ProbP [(x, y) ∈ Iσ(x,µ,σmax, ν̂(λ))] . (31)

The convexity of OP2 enables the direct application of
Theorem 1 to Type-1 RPMs. This includes the cases
in which none (k = 0) and some (k > 0) of the obser-
vations are removed from the data set in advance. In
contrast to OP2, OP3 is non-convex. This opens the
possibility of (23) having multiple optima. Multiple
optima may result from the possibility of obtaining
the same RPM for different sets of outliers. Because
Type-2 RPMs are calculated by solving a non-convex
program, Theorem 1 cannot be applied directly. How-
ever, the reliability of such models can be establish
by using the Principle of Equivalence. This principle
is based on identifying an auxiliary convex formula-
tion that will result in the very same empirical model
found by solving the non-convex formulation. If this
is attained, the reliability of the model, which is inde-
pendent of the means used to calculate it, can be rig-
orously evaluated via the auxiliary formulation. This
approach can be applied to Type-2 RPMs. In partic-
ular, the solution to OP3 using the original the data
sequence z for a given value of λ is equivalent to the
solution of OP2, which is a convex program, with the
data sequence w. Because only the N − k∗ elements
in w, where

k∗ = floor[N(1− λ)], (32)

are required by the auxiliary program, the reliabil-



ity of Type-2 RPMs is given by Theorem 1 with
k = k∗. These k∗ observations fall outside the opti-
mal σ-volume and satisfy Fκ(ν̂)(κ) > λ.

The reliability of Type-3 and Type 4 RPMs is con-
sidered next. Denote by R̂ any of such RPMs. The
reliability of R̂ is defined as

r(R̂) = ProbP [(x, y) ∈ S] , (33)

where S = Iy(x, p̂, p̂) ∩ Iσ(x,µ,σmax, ν̂(λ)). The fol-
lowing theorem enables calculating r(R̂).

Theorem 2 : Let z = {zi} = {(xi, yi)}, for i =
1, . . . ,N , be an independent data sequence resulting
from a stationary discrete-time data generating pro-
cess and R̂ be a Type-3 or Type-4 RPM. When the
containment condition (26) holds, the reliability of R̂
is given by (28) with d = np and k = k∗ < N − d.
Otherwise, the reliability of R̂ is given by (28) with
ε = ε1 + ε2, where ε1 is given by (29) for d = 2np
and k = 0; and ε2 is given by (29) for d = np and
k = k∗ < N − d.

Proof. When the containment condition holds, the
two events defining the model’s reliability are depen-
dent and r(R̂) = ProbP [(x, y) ∈ Iσ]. In this case the
reliability is given by Theorem 1 after applying the
Principle of Equivalence to the non-convex formu-
lations (24) or (23) to Type-3 and Type-4 RPMs re-
spectively. In both cases k = k∗ as defined in (32).
When set containment does not hold, use the bound
r(R̂) ≥ ProbP [(x, y) ∈ Iy] + ProbP [(x, y) ∈ Iσ]− 1.
This bound is generally loose, so the actual model’s
reliability is probably larger. Each of the two events
in (33) will be considered separately. Since the event
(x, y) ∈ Iy(x) is enforced by solving the convex pro-
gram in (9) or (27) with N observations, we can read-
ily bound its probability using Theorem 1 for d= 2np
and k = 0. This leads to ε1. Conversely, the event
(x, y) ∈ Iσ(x) is enforced by solving the non-convex
programs in (24) for a Type-3 RPM, and (23) for a
Type-4 RPM. The principle of equivalence enables
evaluating the probability of this event by considering
an auxiliary convex program for which k∗ out of the
N observations are discarded. This leads to ε2. Theo-
rem 2 results from substituting these expressions into
Theorem 1.

Example 3: The reliability of RPM D and E, which are
Type-3 RPMs, is considered first. Since neither model
satisfies the Containment Condition (26), the reliabil-
ity of each event must be added. Whereas the first
event in (33), for which N = 150, k = 0 and d = 14,
yields 1− ε1 = 0.6984 with confidence 1− β = 0.99;
the second event, for which N = 150, k = 0 and
d = 7, leads to 1− ε2 = 0.8050 with the same con-
fidence. Therefore, the reliability of RPM D is no
less than 1− ε1− ε2 = 1− ε = 0.503 with confidence
1− β = 0.99. In the case of RPM E we have the same

value for ε1 as that for RPM D, whereas for the sec-
ond event, for which N = 150, k = 7 and d= 7, leads
to 1 − ε2 = 0.6984 with confidence 1 − β = 0.99.
Therefore, the reliability of RPM D is no less than
1− ε1− ε2 = 1− ε= 0.3968 with confidence 1−β =
0.99. Hence, discarding seven outliers improved per-
formance by 74% at the expense of a reduction in the
reliability of 10%. Finally, we will evaluate the relia-
bility of RPM F and G, which are Type-4 RPMs. The
containment condition holds for RPM F but not for
RPM G. The reliability of RPM F, for whichN = 150,
k = 0 and d = 7, is no less than 1− ε = 0.8050 with
confidence 1− β = 0.99. In the case of RPM G, the
first event in (33), for which N = 150, k = k∗ = 7
and d = 7, leads to 1− ε1 = 0.6984 with confidence
1− β = 0.99; while the second event, for which N =
150, k = 0 and d = 14, leads to 1− ε2 = 0.6984 with
confidence 1− β = 0.99. Therefore, the reliability of
RPM G is no less than 1− ε1 − ε2 = 1− ε = 0.3968
with confidence 1− β = 0.99. The 30% reliability re-
duction of RPM G relative to RPM F is affected by the
conservatism in Theorem 2. This illustrates the ben-
efits of satisfying the containment condition. These
results illustrate the typical trade-off between perfor-
mance and reliability. These figures of merit should be
traded off until the desired balance is reached. This
balance can be reached by increasing the number of
observations N , of outliers via λ, or by changing the
model’s structure via np, which prescribes d.

6 CONCLUSIONS

This and the companion paper (Crespo et al. 2015)
present techniques for constructing random predictor
models via optimization. These models enable a rigor-
ous characterization of key features of the prediction,
and of its reliability. Models with various degrees of
fidelity are developed. This mathematical framework
sets forth a new paradigm for the construction of em-
pirical models in which the model’s performance and
reliability can be rigorously evaluated and traded-off.
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