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ABSTRACT: This and a companion paper propose techniques for constructing parametric mathematical mod-
els describing key features of the distribution of an output variable given input-output data. By contrast to stan-
dard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs)
yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a
polynomial dependency on the input and a linear dependency on the parameters are proposed. These formula-
tions yield RPMs having various levels of fidelity in which the mean and the variance of the model’s parameters,
thus of the predicted output, are prescribed. As such they encompass all RPMs conforming to these prescrip-
tions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on
the formulation, most) of the observations are less than a fixed number of standard deviations from the mean
prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calcu-
late the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the
model’s reliability, which is the probability that a future observation would be within the predicted ranges, can
be bounded tightly and rigorously.

1 INTRODUCTION

Metamodeling refers to the process of creating a
mathematical representation of a phenomenon based
on input-output data. These models can have a para-
metric (e.g., polynomial response surfaces, smooth-
ing spline models, polynomial chaos expansions) or
non-parametric structure (e.g., Kriging/Gaussian pro-
cess). In the former case the analyst first prescribes
the model structure and then determines the value
of the model parameters such that a measure of the
discrepancy between observations and predictions is
minimized. This step is commonly referred to as
model calibration or regression. Model-form uncer-
tainty, measurement noise, and numerical error often
inhibit confidently prescribing a fixed constant value
for such parameters. Consequently, a family of pa-
rameter values is prescribed such that the predictions
resulting from evaluating the computational model at
any family member accurately represents the obser-
vations.

Several model calibration techniques are available
in the literature. Many of them assume the structure

y =M(x, p) + η, (1)

where y ∈ Rny is the output, M is the computational
model, x ∈ Rnx is the input, p ∈ Rnp is the parame-

ter, and η ∈ R is a random variation caused by noise
and measurement error. Many model calibration tech-
niques are based on this structure, the assumption of
p being a fixed but unknown constant (i.e., the uncer-
tainty in p is epistemic), and the assumption of η being
independent and identically distributed (IID) follow-
ing a normal distribution with zero mean and a fixed
variance. A typical regression problem consists of es-
timating the value of p in M given the set of obser-
vations (xi, yi), i = 1, . . . ,N , where N > np. This is
often carried out by searching for the parameter real-
ization that minimizes the sum of squared residuals,
pLS. The precision of this estimate, which prescribes
how much it can deviate from its “true value” within
an epistemic framework, is often evaluated using con-
fidence intervals (Seber and Wild 2003). The calcula-
tion of confidence intervals, prediction intervals (i.e.,
intervals where future observations are expected to
fall) and credible intervals (Kennedy and O’Hagan
2001) require having a probabilistic description of p.
This description often requires (i) knowing/assuming
a distribution for the prediction error, (ii) M and η
taking particular forms (e.g.,M depends linearly on p
and the noise η is additive) and/or (iii) M being accu-
rately represented by a linear approximation in p. As
such, the suitability of the resulting intervals depends
tightly on the validity of such assumptions.

A common approach to model calibration is



Bayesian inference. In Bayesian inference the ob-
jective is to describe the model’s parameters as a
vector of possibly dependent random variables using
Bayes’ rule (Kennedy and O’Hagan 2001). The re-
sulting vector, called the posterior, depends on an as-
sumed prior random vector, and the likelihood func-
tion; which in turn depends on the observations, and
on the structure of M . Whereas this approach does
not make any limiting assumptions on the manner in
which M depends on p, nor on the structure of the
resulting posterior; it requires that the calibrated vari-
ables in p be epistemic. This vector might be com-
prised of physical epistemic uncertainties and hyper-
parameters of aleatory variables1. Note that the con-
sideration of aleatory uncertainties requires assuming
a structure for them, so they can be parameterized in
terms of non-physical epistemic variables. The pres-
ence of aleatory and model-form uncertainty yields
uncertainty characterizations that fail to describe the
prediction error. As more data is available, the cali-
brated p approaches a deterministic quantity, and the
model prediction y converges to a single function of
the input. The offset between this function and the
data is not captured by the model. This deficiency can
be mitigated by adding a fictitious discrepancy term to
M (Kennedy and O’Hagan 2001). This term, which
can have a fixed epistemic or a fixed aleatory struc-
ture, is calibrated as if it were part ofM . In spite of its
high computational demands, and of the potentially
high sensitivity of the posterior to the assumed prior,
this method is commonly regarded as a benchmark.

In this paper, we do not use an error term such as η,
nor do we make prior assumptions about a distribution
of p. What is here called a Random Predictor Model
(RPM) has the general form y =M(x, p), where p is
a random vector, so the output, y, is a random process
parameterized by x. We do not fully specify the dis-
tribution of p. Instead, we only seek to find a mean
value, a variance, and, in some cases, a support set
for p. These will be determined by solving optimiza-
tion problems according to the input-output data and
a scalar parameter chosen by the analyst. The role of
this parameter is to limit the largest number of stan-
dard deviations that can separate the data points from
the mean prediction. The resulting description of p is
chosen to be as tight as possible while satisfying this
restriction. We further provide means of identifying
outliers in the data set so that eliminating them from
the modeling process can result in predictions hav-
ing a narrower range at the expense of a reduction in
the model’s reliability. As compared to previous work
on interval predictor models (Crespo et al. 2014), the
main contribution of this article is the consideration
of random descriptions of p, thus of y, having an ar-

1For instance, if q contains the physical parameters of the
model M , where q1 is epistemic and q2 is aleatory having a nor-
mal distribution with mean µ and standard deviation σ, the vec-
tor p = [q1, µ,σ]

> contains three epistemic variables, one phys-
ical and two non-physical.

bitrary structure, e.g., the results apply to p having a
Normal, Beta or any other distribution.

As in the Bayesian inference approach, the formu-
lations proposed provide a crisp description of the un-
certainty in the value of the model’s parameters. In
contrast to the Bayesian approach however, the meth-
ods in this paper do not require any prior descrip-
tion of the uncertainty in p, and the resulting mod-
els yield analytical characterizations for both the pre-
dicted output and the model’s reliability. This paper
focuses on (i) computational models that depend lin-
early on the parameters and polynomially on the state,
i.e., y = p>ϕ(x) where ϕ(x) is a vector of monomials
in the components of x, and (ii) uncertainty sets for p
that are hyper-rectangular. The advantage of these sets
over all other sets (such as the ellipsoidal sets used in
(Campi et al. 2009)), is that each component of p can
be selected arbitrarily in its interval independently of
the choices made for any of the other parameters. As
such, parameter interdependencies are avoided. This
independence enables the calculation of RPMs whose
parameters are independent random variables. These
properties enable an analytical description of the pre-
diction and a formal quantification of its reliability.
Extensions to models having other dependencies on
x have been made, but this paper will only focus on
polynomials.

This paper prescribes formulations for two types of
RPMs. Whereas Type-1 RPMs use the entire data set,
Type-2 RPMs neglect a fixed percentage of the obser-
vations. Such observations, which are identified while
the RPM is calculated, are regarded as outliers. The
companion paper (Crespo et al. 2015) focuses on two
other types of RPMs.

2 PROBLEM STATEMENT

A system is postulated to act on a vector of inputs to
produce an output. The output can depend on the state
variables and on some other influences, causing, for
instance, intrinsic variability. Let X ⊆ Rnx be a set of
input variables, and Y ⊆Rny be a set of outputs which
might result from the system acting on elements ofX .
In the following, the focus will be on the single-output
(ny = 1) multi-input (nx ≥ 1) case.

It is desired to build a model of the Data Gener-
ating Mechanism (DGM) which will predict the out-
put corresponding to unobserved realizations of the
input. The presence of intrinsic variability and un-
certainty (e.g., the case in which some of the states
that prescribe the measured output are unmeasurable
or unknown to the analyst) makes it unreasonable to
build a mathematical model that predicts a single out-
put for a fixed input. Instead, an Interval Predictor
Model (IPM) will predict an interval valued function
into which the output from an unobserved input is ex-
pected to fall, while an RPM will predict a random
process matching key features of the data. Engineer-
ing judgment is used to pick a collection of mono-



mials in the state variables, ϕ(x), to use as basis func-
tions. Data points zi = (xi, yi) for i= 1, . . . ,N are ob-
tained from observations of the system. Instead of the
standard practice of fitting all of the data as closely
as possible with a single vector p of parameters, the
thrust in this work is to restrict as much as possible a
set in Rnp from which p is chosen while, at the same
time, having the property that each data point (except,
possibly, for a few outliers neglected purposely by the
analyst) can be fit exactly by at least one element in
such a set. One restriction to be considered is for p
to belong to a set P . For a fixed value of the state x,
the propagation of P through M yields an interval of
output values. Thus, these models are called Interval
Predictor Models. The objective here is to choose P
to make the corresponding y intervals as small as pos-
sible and still allow each data point (xi, yi) to be mod-
eled as yi = p>ϕ(xi) for some p ∈ P . The other form
of restriction considered is to describe p as a random
vector. For a fixed value of the state x, the propaga-
tion of this vector through M yields a random vari-
able Ry(x) for the outcome y at x. Various properties
of Ry(x), such as mean, variance, and support set, are
determined by those of p. The thrust here is to choose
a random vector that leads a prediction matching key
features of the data.

In this setting the two main problems of interest
can be stated as follows. Let z= {zi}= {(xi, yi)}, for
i = 1, . . . ,N , be a sequence of observations. First, we
want to find an empirical model that, when evaluated
at a new value xN+1 of the state, returns an informa-
tive prediction of the unobserved output yN+1. An in-
formative prediction can be interpreted as a prediction
that is consistent with salient features of the data com-
prising z. These features, which are cast by the analyst
as design requirements (for example, we might want
all observed outcomes to be less than 2-standard devi-
ations from the mean prediction), are cast as inequal-
ity constraints in the optimization problems used to
calculate the model. Second, we want to quantify the
probability that yN+1 be compliant with such require-
ments (in the previous example, we want to evaluate
the probability that yN+1 be less than 2-standard de-
viations away from the mean prediction).

3 INTERVAL PREDICTOR MODELS

This section introduces basic concepts from IPMs that
are essential for the construction of RPMs. Additional
information on IPMs and examples are available in
(Crespo, Kenny, & Giesy 2014). An IPM is simply a
mapping that assigns an output interval for each value
of the input. In the context of this paper, an IPM as-
signs to each instance vector x ∈ X a corresponding
outcome interval in Y . That is, an IPM is a set-valued
map

I : x→ Iy(x) ⊆ Y, (2)

where x is a state vector, and Iy(x) is the prediction
interval. Let M be any functional acting on a vector
x of state variables and a vector p of parameters to
produce an output y, i.e., y =M(x, p). A parametric
IPM is obtained by associating to each x ∈ X the set
of outputs y corresponding to all values of p in P :

Iy(x,P ) = {y =M(x, p), p ∈ P}. (3)

Iy(x,P ) will be an interval as long as M(x, p) is a
continuous function of x and p, and P is a connected
set. All instances ofM and P considered in this paper
satisfy these restrictions. Attention will be limited to
the IPM given by

Iy(x,P ) = {y = p>ϕ(x), p ∈ P}. (4)

where ϕ(x) is a vector of monomials, and

P = {p : p ≤ p ≤ p}. (5)

The analyst is free to choose which monomials are
relevant to the particular application. A general repre-
sentation of a multivariate polynomial basis is

ϕ(x) =
[
1, xi2 , xi3 , . . . , xin

]>
, (6)

where x = [x1, . . . , xnx ] is the state, and the vector
ij = [ij,1, . . . , ij,nx ], with ij 6= ik for j 6= k has the ex-
ponents of the monomials2.

The limits of the output of the IPM prescribed by
(4-6) can be explicitly computed as

Iy(x, p, p) =
[
y(x, p, p), y(x, p, p)

]
, (7)

where

y(x, p, p) = ϕ(x)>
(
p+ p

2

)
− ϕ(|x|)>

(
p− p
2

)
(8)

y(x, p, p) = ϕ(x)>
(
p+ p

2

)
+ ϕ(|x|)>

(
p− p
2

)
(9)

Therefore, the envelopes of the interval valued func-
tion Iy, are linear functions of p and p, and piecewise
polynomial functions of the input.The spread of Iy,
which is the separation between its limits, is

δy(x, p, p) = ϕ(|x|)>(p− p). (10)

Note that the spread depends on the size of the un-
certainty box P , but is independent of its geometric
center.

Commonly, the Least Squares (LS) prediction, y =
p>LSϕ(x), where pLS is given by

pLS = (A>A)−1A>[y1, . . . , yN ]
>, (11)

2The inclusion of 1 in ϕ(x) guarantees that every (x, y) pair
will be interpolated using some p even if x = 0.



for Ai,j = ϕj(xi), for i = 1, . . . ,N and j = 1, . . . , np
is used to approximate the DGM. pLS minimizes the
sum of the squares of the predicted errors.

3.1 Type-1 IPMs

A Type-1 IPM is given by Equations (4-6) where P
is the solution to the following Optimization Problem
(OP).

Optimization Problem 1. The limits of P are given by〈
p̂, p̂
〉
= argmin

pb, pa

{Ex[δy(x, pb, pa)] : pa ≤ pb,

y(xi, pb, pa) ≤ yi ≤ y(xi, pb, pa)
}
, (12)

where Ex[·] is the expected value operator with re-
spect to the input x, and (xi, yi) for i = 1, . . . ,N are
the observations in z.

Therefore, a Type-1 IPM yields a P that minimizes
the expected interval spread such that all the observed
outputs are within Iy(x). When x is a random vec-
tor of known distribution, the cost function in (12)
can be calculated analytically. Otherwise, the sample
mean based on the data can be used to approximate
it. The resulting IPM, which is calculated by solving
the convex optimization problem in (12), admits a rig-
orous reliability assessment (see Section 5). This as-
sessment quantifies the probability that a future ob-
servation will fall within Iy(x).

4 RANDOM PREDICTOR MODELS

A RPM is a mapping that assigns to each input vector
x ∈ X a corresponding random variable in the output
space Y . That is, an RPM is a random variable-valued
map

R : x→ Ry(x) ⊆ Y, (13)

where x is the input, and Ry(x) is a random process
whose support lies in Y . A parametric RPM is ob-
tained by associating to each x ∈X the set of outputs
y corresponding to all values of p described by a ran-
dom vector with joint Cumulative Distribution Func-
tion (CDF) Fp(p) having the support set P . As before,
attention will be limited to the case where the output
is a linear function of the parameter p, and a polyno-
mial function of x. This leads to

Ry(x) = {y = p>ϕ(x), p : Fp(p), p ∈ P}. (14)

Denote by µ ∈ Rnp , ν ∈ Rnp , and c ∈ Rnp(np−1)/2 the
mean, variance and correlation of the random vector.
The variance and correlation fully prescribe the co-
variance matrix C(ν, c) ∈ Rnp×np . It can be shown
that any random vector with a support set P as in (5)

must satisfy the consistency equations3

p ≤ µ ≤ p, (15)

0 ≤ ν ≤ (µ− p)� (p− µ), (16)

−1 ≤ c ≤ 1, (17)

C(ν, c) � 0. (18)

The operator symbol in (16) denotes the component-
wise product of vectors, and the symbol in (18) de-
notes positive semidefiniteness.

The random process Ry(x) is fully prescribed by
the CDF of p. Naturally, statistics of the output y,
such as the mean µy(x) = Ep[y(x, p)], the variance
νy(x) =Ep[(y(x, p)−µy(x))2], and the range Iy(x) =
[minp y(x, p),maxp y(x, p)], vary with x. In particu-
lar, the mean prediction is µy(x,µ) = µ>ϕ(x), the
output’s variance is

νy(x, ν, c) = ϕ(x)>C(ν, c)ϕ(x), (19)

and the output’s range is the interval value function
(7). When the components of p are uncorrelated, (19)
reduces to 4

νy(x, ν) = ν>ϕ2(x). (20)

A few metrics for characterizing Ry(x) are intro-
duced next. The σ-surface, which connects all the out-
puts y that are τ standard deviations from the mean
prediction, is defined by

l(x,µ, τ, ν, c) = µ>ϕ(x) + τ
√
νy(x, ν, c). (21)

The σ-volume, defined as

Iσ(x,µ, τ, ν) = [l(x,µ,−τ, ν, c), l(x,µ, τ, ν, c)] , (22)

contains all the outputs y that are no more than τ stan-
dard deviations away from the mean prediction µy(x).
For the value of τ to be feasible (i.e., for the σ-surface
to be within the support of Ry), it must satisfy

y(x, p, p) ≤ l(x,µ, τ, ν, c) ≤ y(x, p, p). (23)

Equation (23) ensures that the support of the process
contains outcomes that are up to τ standard deviations
from the mean prediction.

The formulations that follow prescribe key statis-

3The upper bound in (16) results from applying the expected
value operator Epi [·] to both sides of p2i ≤ (p

i
+ pi)pi − pipi,

which holds for all pi ∈ [p
i
, pi], and using νi = Epi

[p2i ]− µ2
i for

i = 1, . . . , np.
4When the correlation c is zero, the corresponding argument

of any function depending on it will be dropped from the nota-
tion.



tics of p, thus of the random output y(x), based on
input-output data. As such they encompass all RPMs
that conform to these statistics. The first two of four
types of RPMs are proposed here. Type-1 RPMs pre-
scribe the mean and variance of Ry(x) when the en-
tire data set is used. Type-2 RPMs prescribe the same
statistics after eliminating the effects of a fixed per-
centage of the observations. Such observations, which
can be regarded as outliers, are worst-case in the sense
that their removal tightens the predicted range of the
σ-volume the most. The formulations below only con-
sider the uncorrelated case c = 0. Extensions to the
correlated case can easily be made. Furthermore, the
selection of µ as pLS is arbitrary, and any other value
can be used. In the developments that follow, the per-
formance of an RPM refers to the property evaluated
by the cost function in the corresponding OP.

4.1 Type-1 RPMs

Type-1 RPMs prescribe the mean and variance of
Ry(x) when the entire data set in z is used. A Type-1
RPM is given by Equations (6, 14), where p is a vector
of uncorrelated random variables with expected value
µ = pLS , and a variance ν = ν̂, given by the solution
to the following program.

Optimization Problem 2. The variance of p is equal to

ν̂ = argmin
ν≥0

{Ex[νy(x, ν)] : l(xi, µ,−σmax, ν) ≤ yi ≤

l(xi, µ, σmax, ν) for i = 1, . . . ,N} , (24)

where σmax > 0 is a parameter prescribed by the ana-
lyst, and (xi, yi) for i = 1, . . . ,N are the observations
in z.

Hence, a Type 1-RPM minimizes the expected vari-
ance of the random process Ry(x) such that all ob-
servations are no more than σmax standard deviations
away from the mean prediction; i.e., all observations
are within the σ-volume Iσ(x,µ,σmax, ν̂).

The dependence of ν̂ on σmax is studied next. Equa-
tion (24), which is subject to 2N + np inequality con-
straints, is equivalent to the linear program

ν̂ = argmin
ν

{
ν>Ex

[
ϕ2(x)

]
: σ2

maxν
>ϕ2(xi) ≥

(
yi − µ>ϕ(xi)

)2
for i = 1, . . . ,N, ν ≥ 0

}
, (25)

which is subject to N +np constraints. The constraint
set in (25) scales inversely with σ2

max, so the scaled
optimal objective value σ2

maxν̂
>Ex[ϕ

2(x)], is constant
as σmax varies. It follows that that the larger σmax,
the smaller ‖ν̂‖, and the larger the number of stan-
dard deviations separating any given point (x, y) from
the corresponding mean prediction. This observation
has consequences for the Iσ resulting from this for-
mulation. If ν̂1 is the solution to (25) corresponding

to σmax,1, and ν̂2 = αν̂1 where α = (σmax,1/σmax,2)
2,

then ν̂2 is the solution to (25) corresponding to σmax,2.
Consequently, the σ-volumes Iσ(x,µ,σmax,1, ν̂1), and
Iσ(x,µ,σmax,2, ν̂2) are equal. Hence, the σ-volume,
Iσ(x,µ,σmax, ν̂) is independent of the choice of σmax.

Note that both Type-1 IPMs and Type-1 RPMs re-
quire solving a convex OP. As such they can effi-
ciently handle hundreds of thousands of data points,
thus, many more input dimensions than alternative
metamodels. This is in sharp contrast to Gaussian Pro-
cesses which are limited to a few thousand data points
before becoming numerically intractable.

A Type-1 RPM does not prescribe the support of
p, thus, of Ry(x). Any random vector satisfying the
consistency Equations (15-18) for µ = pLS and ν = ν̂
is a valid characterization of Fp(p). Since Type-1
RPMs are calculated by solving a convex optimiza-
tion problem, they admit a rigorous reliability assess-
ment. This assessment, presented in Section 5, quan-
tifies the probability that a future observation will fall
inside σ-volume Iσ(x, pLS, σmax, ν̂).

Example 1: Consider the DGM y = x2 cos(x) −
sin(3x)e−x

2 − cos(x2) + x(g − 1), where x ∈ R is
an IID sequence of random variables with uni-
form distribution over X = [−5.5,5.5], and g is
IID with a standard normal distribution. Note that
no knowledge on the structure of the DGM is re-
quired to calculate the RPMs. A data sequence z
for N = 150 observations was generated. In the de-
velopments that follow we assume that np=7. In
(Crespo et al. 2014) we calculate several IPMs
based on the same data sequence. The LS solu-
tion is pLS = [−0.8734,−1.1059,−0.9926,0.0026,
−0.0228,−0.0004,0.0028]>.

A Type-1 RPM for σmax = 1, to be referred to as
RPM A, is shown in Figure 1. This figure shows
the observations (×’s), the mean prediction µy(x)
(solid line), as well as σ-surfaces (green dashed-
dotted lines) in increments of 0.5 standard deviations.
Note that the observation near (1,−15) limits the σ-
volume from below. The only significant variance in ν̂
is ν̂1 = 180.3824. The performance of RPM A,Ex[νy]
is practically equal to ν̂1. Note that 143 out of the 150
observations are within the σ = 0.5 volume. Further
notice that the number of standard deviations between
an arbitrary point (x, y) and the mean prediction for
the same value of x, can be reduced by enlarging ν.
This can be attained by reducing σmax.

4.1.1 Identification of Outliers
The presence of outliers in the data yields undesirably
large σ-volumes and output ranges, diminishing the
RPMs performance. Whereas the limits of the opti-
mal Iσ might be prescribed by a few observations, the
majority of them might be much closer to the mean
prediction, e.g., RPM A. The outliers, whose removal
from the data set will lead to smaller predicted vari-
ances, can be identified using anyone of several fig-
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Figure 1: RPM A: Type-1 RPM for for σmax = 1.

ures of merit. In this paper we will use the figure of
merit

κi(µ, ν, c) =

(
yi − µ>ϕ(xi)

)2
νy(xi, ν, c)

, (26)

where ν is the variance of p. κi is a variance-
normalized distance squared between the ith observed
output and the mean prediction at the corresponding
input. Outliers will be identified by determining the
data points corresponding to the largest percentiles of
the empirical CDF of κ, Fκ(ν̂)(κ), for i = 1, . . . ,N ,
i.e., (xi, yi) is an outlier if Fκ(ν̂)(κi) > λ where 0�
λ < 1. Once the outliers are identified, they can be
removed from the data sequence and a new Type-1
RPM will be calculated. The resulting RPM will at-
tain tighter predictions for a λ fraction of the obser-
vations in z, while the prediction for the remaining
1− λ fraction might be considerably degraded. The
outliers found by this procedure will be the same re-
gardless of the value of σmax. This is a consequence of
the following observation. If (κi, Fκ(κi)) are points
on the optimal CDFs corresponding to σmax,1, the
points on the optimal CDF corresponding to σmax,2 are
(ακi, Fκ(κi)), where α was defined earlier.

Example 2: We now derive a Type-1 RPM for σmax =
1 after removing seven outliers from the original data
set. These outliers attain the largest values of κi. The
resulting RPM, to be referred to as RPM B, is shown
in Figure 2. In this case there are seven observations
outside the σ = 1 volume by design (shown with cir-
cled cross symbols), 114 within the σ = 0.5 volume,
and the remaining 29 are inside the σ = 1 volume and
outside the σ = 0.5 volume. The only sizable vari-
ances for RPM B are ν̂1 = 44.5139, and ν̂2 = 0.5194.
The performance of RPM B, Ex[νy] = 49.2469, is
72.7% better than that of RPM A.

4.2 Type-2 RPMs

A formulation leading to an alternative RPM is pre-
sented next. In contrast to Type-I RPMs, this approach
searches for ν by using only a fixed percentage of the
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Figure 2: RPM B: Type-1 RPM after the removal of outliers.

N observations available. The observations compris-
ing the removed set are worst-case in the sense that
their removal tightens the optimal σ-volume the most.
Whereas the outliers removed to construct RPM B are
worst-case for the value of ν̂ corresponding to RPM
A only, those neglected in a Type-2 RPMs are worst-
case for the varying value of ν being considered dur-
ing the optimization. This will be carried out without
removing any point in the data sequence.

In particular, a Type-2 RPM is given by Equations
(6, 14), where p is a vector of uncorrelated variables
with expected value µ = pLS, and a variance ν = ν̂
given by the following OP.

Optimization Problem 3. The variance of p is equal to

ν̂ = argmin
ν≥0

{
Ex[νy(x, ν)] : Fκ(ν)

(
σ2

max

)
≥ λ

}
, (27)

where σmax > 0 is a parameter prescribed by the an-
alyst, Fκ(ν) is the empirical CDF of κ(ν) in (26)
based on the N observations in z, and 0 < λ ≤ 1,
another parameter to be chosen by the analyst, is
the proportion of observations to be contained by
Iσ(x,µ,σmax, ν̂(λ)).

Hence, a Type-2 RPM minimizes the expected vari-
ance of the random process Ry(x) such that 100λ%
of the observations are no more than σmax standard
deviations apart from the mean prediction. The tight-
ening of the prediction for 100λ% of the observations
caused by (27) yields a σ-volume Iσ(x,µ,σmax, ν̂(λ))
that does not enclose the remaining 100(1 − λ)%.
This shows that (27) is a chance-constraint formula-
tion (Charnes et al. 1958), in which one is willing to
accept the occurrence of unfavorable low-probability
events (probability 1− λ) for the sake of an improved
performance for high-probability events (probability
λ). As with Type-1 RPMs, σmax is essentially a scal-
ing factor.

OP3 is a non-convex formulation, which for λ =
1 yields the same RPM as OP2 5. When λ < 1,

5Note that, if Ex[·] is calculated based on a sample mean, the
entire z sample must be used to make the convex formulation
equivalent to (27).



a fixed number of observations (outliers) are ne-
glected as the RPM is being calculated. Outliers
can be easily identified by finding the data points
for which Fκ(ν̂) (κi(ν̂)) > λ. The points not satis-
fying this condition, which are the elements of z
within Iσ(x,µ,σmax, ν̂(λ)), constitute the sequence w.
A Type-1 RPM based on the data sequence w is equiv-
alent to the Type-2 RPM in (27) based on the data se-
quence z. This relationship enables performing a reli-
ability assessment of Type-2 RPMs. This assessment,
presented in Section 5, quantifies the probability that a
future observation will be within Iσ(x,µ,σmax, ν̂(λ)).

Example 3: We now derive a Type-2 RPM for the
same observations used earlier having λ = 143/150
and σmax = 1. As with RPM B, we search for a σ-
volume for which 143 observations are less than one
standard deviation from the mean prediction. The re-
sulting RPM, shown in Figure 3, will be referred to
as RPM C. Note that the process is more concentrated
about the LS prediction than either RPM A or RPM
B. The only sizable components of ν̂ are ν̂1 = 6.0124,
and ν̂2 = 3.2985. Note that the outliers, which are
the observations outside Iσ(x,µ,1, ν̂(λ)), differ from
those corresponding to RPM B. The performance of
RPM C, Ex[νy] = 37.7676, is 23% better than that of
RPM B.

Figure 4 shows the empirical CDFs of κ(ν̂) for
RPM A, B and C. The horizontal line λ = 143/150
is shown in green. Recall that the larger the expected
value of κ, the more concentrated Fp(p), and the bet-
ter the RPM. Using the figure of merit E[κ|κ < σmax],
which is the area between the constant function λ and
the CDF in the domain κ ∈ [0, σmax], the ranking from
best to worst is RPM C, RPM B, and RPM A. The
advantage of RPM C is also reflected in the values of
Ex[νy] listed above. The vertical jumps in the CDFs
at κ = σmax are the result of obtaining an optimum for
which several observations are on the boundary of the
σmax-volume.

The evaluation of the same figure of merit above
over the domain κ∈ [σmax,∞] indicates that RPM B is
the best model of the three. This can be inferred from
Figure 4 by noting that the CDF of RPM B assumes
the largest values of κ for most of the probability val-
ues exceeding λ. This illustrates that (27) is a chance-
constraint formulation, in which one is willing to ac-
cept the occurrence of unfavorable low-probability
events (i.e., those in the κ ∈ [σmax,∞] range) for the
sake of an improved performance for high-probability
events (i.e., those in the κ ∈ [0, σmax] range).

5 MODEL’S RELIABILITY

This section presents a framework for rigorously eval-
uating the reliability of the predictor models proposed
above. The reliability of model E , r(E), is the proba-
bility that a future observation will be compliant with
the requirements imposed upon the calculation of the
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Figure 3: RPM C: Type-2 RPM for λ = 143/150 and σmax = 1.
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dashed) and C (black, solid).

model. These requirements are cast in terms of an out-
put y belonging to a σ-volume Iσ(x) for both Type-1
and Type-2 RPMs. The developments that follow are
based on the Scenario Approach (Calafiore & Campi
2006).

Denote by P the unknown distribution of the DGM
from which the points of the data sequence z are ob-
tained. P can be interpreted as a probabilistic cloud
in the X × Y -space. The case in which y is a deter-
ministic function of x only is a particular case where
P is concentrated over the function. A general P can
accommodate situations where the fluctuation in the
outcome y is caused by sources other than x. No as-
sumption is made on P so that the functional form
relating x and y can be arbitrary. The following theo-
rem, taken from (Campi, Calafiore, & Garatti 2009),
permits quantifying the reliability of an empirical pre-
dictor model whenever the OP used for its calculation
is convex.

Theorem 1. Let z = {zi} = {(xi, yi)}, for i =
1, . . . ,N , be an independent data sequence resulting
from a stationary discrete-time data generating pro-
cess. Suppose the model E is calculated by solving
a convex constrained optimization problem having a
unique solution. Furthermore, assume that k obser-
vations (outliers) out of the N available have been
discarded when calculating the model. Then, for any
ε ∈ (0,1) and assuming k < N − d, where d is the



number of optimization variables used to calculate E ,
it holds that

ProbPN [r(E) ≥ 1− ε] > 1− β, where (28)

β =
N !(1− ε)N−d

(N − d)!d!

k∑
i=0

(N − d)!
(N − d− i)!i!

εi

(1− ε)i
. (29)

This theorem provides an assessment of unob-
served data. The theorem states that the reliability of
E is no worse than 1− ε with probability greater than
1− β. As for the probability 1− β, one should note
that E is a random model by virtue of the random-
ness in P prescribing z. Therefore, its reliability can
be greater than or equal to 1− ε for some random ob-
servations but not for others, and β refers to the prob-
ability PN = P× · · · × P of observing a bad set of N
samples such that the reliability of the model is less
than 1− ε. Parameter ε is referred to as the reliabil-
ity parameter while β is the confidence parameter. It
is worth noting that the confidence parameter can be
made small enough that it losses any practical signif-
icance and r(E) ≥ 1 − ε. This can be done without
letting N be too large because β vanishes exponen-
tially with N .

The reliability of a Type-1 IPM, to be denoted as
I, is defined as r(I) = ProbP

[
(x, y) ∈ Iy

(
x, p̂, p̂

)]
.

Hence, r(I) is the probability that an unobserved
input-output pair (x, y) will fall within the range
Iy(x). The convexity of the OP1 enables the direct
application of Theorem 1. The reliability of any Type-
1 or Type-2 RPM, to be denoted as R, is defined as
r (R) = ProbP [(x, y) ∈ Iσ(x,µ,σmax, ν̂(λ))]. Hence,
r(R) is the probability that an unobserved input-
output pair (x, y) will fall in the optimal σ-volume
corresponding to σmax.

The convexity of OP2 enables the direct applica-
tion of Theorem 1 to Type-1 RPMs. This includes
the cases in which none (k = 0) and some (k > 0)
of the observations are removed from the data set in
advance. In contrast to OP2, OP3 is non-convex. This
opens the possibility of (27) having multiple optima.
Multiple optima may result from the possibility of ob-
taining the same RPM for different sets of outliers.
Because Type-2 RPMs are calculated by solving a
non-convex program, Theorem 1 cannot be applied
directly. However, the reliability of such models can
be establish by using the Principle of Equivalence.
This principle is based on identifying an auxiliary
convex formulation that will result in the very same
empirical model found by solving the non-convex
formulation. If this is attained, the reliability of the
model, which is independent of the means used to cal-
culate it, can be rigorously evaluated via the auxiliary
formulation. This approach can be applied to Type-
2 RPMs. In particular, the solution to OP3 using the
original the data sequence z for a given value of λ is
equivalent to the solution of OP2, which is a convex
program, with the data sequence w. Because only the

N − k∗ elements in w, where

k∗ = floor[N(1− λ)], (30)

are required by the auxiliary program, the reliability
of Type-2 RPMs is given by (28) with k = k∗ in
(29). These k∗ observations fall outside the optimal
σ-volume and satisfy Fκ(ν̂)(κ) > λ.

Example 6: The reliability of RPM A, B and C,
for which (28) is directly applicable, is considered
first. The reliability of RPM A, which is a Type-1
RPMs calculated using N = 150, k = 0 and d = 7,
is no less than 1 − ε = 0.8050 with confidence
1− β = 0.99; while the reliability of RPM B, which
is also a Type-1 RPM for which N = 150, k = 7 and
d = 7, is no less than 1− ε = 0.6984 with confidence
1− β = 0.99. Hence, the exclusion of seven outliers
rendered an improvement in the system performance
of 72.7% at the expense of a reduction in the model’s
reliability of 10.66%. The reliability of RPM C,
which is a Type-2 RPM for which k = k∗ = 7, and
the reliability of RPM B are the same, even though
the performance of RPM C is 23% better.

6 CONCLUSIONS

This and the companion paper (Crespo et al. 2015)
develop techniques for constructing random predictor
models based on data. The formulations proposed en-
able a rigorous characterization of key features of the
predicted output, and of the reliability of the predic-
tion. These articles set forth a new paradigm for the
construction of empirical models in which the mod-
els performance and reliability can be evaluated and
traded off using rigorous means.
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