
 

    

April 2016 

NASA/TP–2016-219186 

 

 

 

Strain-Based Damage Determination Using Finite 

Element Analysis for Structual Health Management 

 
Jacob D. Hochhalter and Thiagaraja Krishnamurthy 
Langley Research Center, Hampton, Virginia 
 
Miguel A. Aguilo 
SANDIA National Laboratories, Albuquerque, New Mexico 
 
 

 

 

 
 

 

 

 

 

 



NASA STI Program . . . in Profile 
 

Since its founding, NASA has been dedicated to the 

advancement of aeronautics and space science. The 

NASA scientific and technical information (STI) 

program plays a key part in helping NASA maintain 

this important role. 

 

The NASA STI program operates under the auspices 

of the Agency Chief Information Officer. It collects, 

organizes, provides for archiving, and disseminates 

NASA’s STI. The NASA STI program provides access 

to the NTRS Registered and its public interface, the 

NASA Technical Reports Server, thus providing one 

of the largest collections of aeronautical and space 

science STI in the world. Results are published in both 

non-NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

 

 TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase of 

research that present the results of NASA 

Programs and include extensive data or theoretical 

analysis. Includes compilations of significant 

scientific and technical data and information 

deemed to be of continuing reference value. 

NASA counter-part of peer-reviewed formal 

professional papers but has less stringent 

limitations on manuscript length and extent of 

graphic presentations. 

 

 TECHNICAL MEMORANDUM.  

Scientific and technical findings that are 

preliminary or of specialized interest,  

e.g., quick release reports, working  

papers, and bibliographies that contain minimal 

annotation. Does not contain extensive analysis. 

 

 CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 

contractors and grantees. 

 CONFERENCE PUBLICATION.  

Collected papers from scientific and technical 

conferences, symposia, seminars, or other 

meetings sponsored or  

co-sponsored by NASA. 

 

 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from NASA 

programs, projects, and missions, often 

concerned with subjects having substantial 

public interest. 

 

 TECHNICAL TRANSLATION.  

English-language translations of foreign 

scientific and technical material pertinent to  

NASA’s mission. 

 

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and feeds, 

providing information desk and personal search 

support, and enabling data exchange services. 

 

For more information about the NASA STI program, 

see the following: 

 

 Access the NASA STI program home page at 

http://www.sti.nasa.gov 

 

 E-mail your question to help@sti.nasa.gov 

 

 Phone the NASA STI Information Desk at   

757-864-9658 

 

 Write to: 

NASA STI Information Desk 

Mail Stop 148 

NASA Langley Research Center 

Hampton, VA 23681-2199 



 

National Aeronautics and  

Space Administration 

 

Langley Research Center   

Hampton, Virginia 23681-2199  

    

April 2016 
 

NASA/TP–2016-219186 

 

 

Strain-Based Damage Determination Using Finite 

Element Analysis for Structural Health Management 

 
Jacob D. Hochhalter and Thiagaraja Krishnamurthy 
Langley Research Center, Hampton, Virginia 
 
Miguel A. Aguilo 
SANDIA National Laboratories, Albuquerque, New Mexico 
 
 

 
 

 

 

 

 

 



 

 

 

Available from: 

 

NASA STI Program / Mail Stop 148 

NASA Langley Research Center 

Hampton, VA  23681-2199 

Fax: 757-864-6500 

 

Acknowledgments 

This work was supported by the NASA Aeronautics Research Institutes Seedling 

Program, under the project entitled “Coupling Damage-Sensing Particles and 

Computational Micromechanics to Enable the Digital Twin Concept.” Sandia National 

Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, 

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 

Energy’s National Nuclear Security Administration under contract no.  

DE-AC04-94AL85000. 

 

 

 

 

 

 

 

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an 

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and 

Space Administration. 

 

 

 

 

 

 

 

 

 



1 

 

Abstract 

A damage determination method is presented that relies on in-service strain sensor 

measurements.  The method employs a gradient-based optimization procedure combined with 

the finite element method for solution to the forward problem. It is demonstrated that strains, 

measured at a limited number of sensors, can be used to accurately determine the location, 

size, and orientation of damage.  Numerical examples are presented to demonstrate the general 

procedure. This work is motivated by the need to provide structural health management 

systems with a real-time damage characterization. The damage cases investigated herein are 

characteristic of point-source damage, which can attain critical size during flight. The procedure 

described can be used to provide prognosis tools with the current damage configuration. 

Nomenclature 

a = damage size 

εx = strain in the X-direction 

εy = strain in the Y-direction 

γxy = shear strain 

h = height of the plate 

i = iteration index 

j = sensor index 

f = objective function 

jR  = distance from the center of the damage to the jth sensor 

S = strain tensor  

θ = orientation of the damage  

w = width of the plate 

X = location of the damage in the X-direction 

Y = location of the damage in the Y-direction 

Introduction 

The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) 

technologies to prevent loss of aircraft control due to adverse conditions remains a safety-

related challenge facing the next generation of aircraft. Such adverse conditions include 

environmental factors, actuator and sensor faults or failures, and point-source damage events.  

One major concern is the growth of undetected damage (i.e. cracks) due to such adverse 

effects, which can reach a critical size during flight, and ultimately result in loss of control of the 

aircraft.  Hence, the development of efficient methodologies to determine the presence, location, 

and severity of damage in critical structural components is important in the progression of 

structural health management systems. 

Approaches for the detection of damage size and location in structures can be based on 

changes in vibration or ultrasonic wave characteristics caused by the damage [1, 2, 3]. 

Approaches that use vibration characteristics are only effective for detecting relatively large 

damage, since small damage may have only negligible effects on vibration properties.  Utilizing 

ultrasonic wave characteristics is effective in detecting smaller damage, but generally requires a 

dense network of sensors.  Also, in addition to standard strain gauge technology, Fiber Optics 

Strain Sensing (FOSS) technology offers the ability to obtain strain measurements with minimal 

weight addition to the structures [4].  Such strain sensors enable real-time feedback of 

measured strain during usage. Even with the continuous advancement in these approaches, 

there still are large uncertainties associated with the determination of damage size, location, 

and orientation.  A methodology is presented herein for employing strain sensing technologies, 
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coupled with the Finite Element Method (FEM) and an optimization procedure to determine 

existing damage.   

In a precursor to the work presented herein, an attempt was made to predict damage 

size and location using a displacement field computed from the strain sensor measurements [5]. 

The displacement field based approach was used since it was found that more accurate 

damage determinations were made from known displacement fields, as compared to known 

strain fields.  However, extraction of the displacement field from a measured strain field (which 

most sensor technologies provide) requires an additional non-trivial algorithm [6]. Also in the 

same previous study, the ABAQUS Extended Finite Element Method (XFEM) was used to 

represent the crack in the finite element mesh. Since then, it has been observed that using the 

ABAQUS XFEM package for the finite element simulations required significantly more 

computational resources than did using a standard ABAQUS FEM approach with a crack 

inserted explicitly into the model’s topology. These findings are specific to the ABAQUS 

implementation of XFEM, and may not be a generally indicative comparison between XFEM and 

explicit representation of cracks.  Therefore, this work used strain data directly from (virtual) 

sensors, and explicitly inserted cracks into the model’s topology during the optimization process. 

Once determined, the damage configuration can be used by real-time prognosis tools to 

determine the criticality of the damage, and provide feedback to control systems. For example, 

Spear et al. [7] present a method whereby a surrogate model, based on an artificial neural 

network, is used to obtain in real-time updated residual-strength predictions after a damage 

event. In that work, design of experiments was used to define multiple damage states. The 

residual strength for each damage state was then computed using three-dimensional elastic-

plastic simulations of crack growth in an integrally-stiffened panel. Those predicted residual 

strengths were then used to train the artificial neural network. The input to the trained neural 

network is then a characterization of damage that has occurred, which can be provided by the 

work presented here.  

The remainder of the paper is organized into three sections. In Section 2, the 

development of the objective function and optimization procedure is described. In Section 3, two 

numerical examples are shown to illustrate the gradient-based optimization process, efficacy, 

and convergence behavior. Following those examples is a detailed discussion on possible 

problems that can be encountered using a gradient-based approach to the optimization problem 

investigated herein. Section 4 briefly illustrates how a nongradient-based optimization algorithm 

can also be used, and how it compares to the gradient-based approach.  

Objective Function and Gradient-based Optimization 

For the present study, damage in a two-dimensional plate is considered.  The damage is 

assumed to be in the form of a crack in a plate with height, h, and width, w, as shown in Figure 

1. The damage is characterized by four independent variables, which are also illustrated in 

Figure 1. The first two variables are the location of the center of the damage, X and Y, the third 

variable is the damage size, a, and the fourth variable is the damage orientation angle, θ, 

defined with respect to the X-axis. 

Since no physical experiments were done in the present study, prospective damage 

states were simulated. Subsequently, the simulated strain data were extracted from the results 

at locations corresponding to virtual strain sensor locations, illustrated by the black dots in 

Figure 1. These reference strain data (identified by the superscript ‘r’) were then used during the 

optimization procedure to mimic the strain data that would be measured from sensors in service, 

after a damage event.  The reference strain at a sensor location, j, is denoted as: 
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  (1.1) 

The optimization procedure then evolves the four damage variables, X, Y, a, and θ, 

starting from some arbitrary initial guess, until convergence with the reference strain data is 

achieved. Each optimization iteration involves adding damage, defined by the above four 

variables, to a finite element model and computing the resulting strains. These variables, which 

are to be optimized, will be referred to as: 

 

 (1.2) 

where i is the current iteration, and n (equal to four in this case) is the number of variables being 

optimized.  Convergence is defined with respect to an objective function, which quantifies the 

difference between the reference strains and the strains computed at each of the optimization 

iteration.  The computed strain at a sensor location, j, and optimization iteration, i, is denoted as: 

 

     (1.3) 

It was found that improved convergence behavior was achieved when the strains were 

multiplied by a weight factor equal to the distance, , between  the current iteration’s estimated 

damage location and the sensor location, j (shown in Figure 1).  The resulting objective function, 

which is to be minimized by the optimization procedure, is defined as: 

 

 (1.4) 

where N is the total number of sensors. 

A quasi-Newton optimization algorithm was employed to minimize the objective function 

defined in Eq. 1.4.  In quasi-Newton methods, the Hessian is updated by analyzing successive 

gradient vectors instead of computing the Hessian matrix.  A limited memory Broyden, Fletcher, 

Goldfarb and Shanno (L-BFGS) method was used to approximate the inverse Hessian operator 

[8].  The search direction is determined by the product of the inverse Hessian operator and the 

objective function, Eq. 1.4, , and can be computed by performing a sequence of 

inner products and vector summations involving the gradient operator  and the pairs of 

changes in the trial values, Eq. 1.2, and objective function values, Eq. 1.4, .  Here 

 and  denotes the current number of pairs  stored.  The maximum number 

of pairs  stored, i.e. , was set to 12 for this problem. At a given optimization 

iteration, if , the pair  is added to the limited memory working set.  If 

, the algorithm selects the latest half, i.e. ,  pairs and adds the current 

pair, i.e. , to the limited memory working set.  
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Figure 1:  Schematic of the plate geometry and the four variables (Xr, Yr, ar, and θr) used to 

define the damage configuration.  The filled black circles indicate virtual sensor locations. 

 

The matrix-free quasi-Newton algorithm is described as follows: 

 

While (tolerance>stopping tolerance or i<max iterations) 

Compute search direction:  , where  is the inverse Hessian operator 

Update parameter vector:   

The step  is computed from a line search 

 and  

Update limited memory working set, i.e. store pairs  in working set , 

where  

i = i+1 

end 

 

To approximate the application of the gradient operator to the inverse Hessian, the L-BFGS two-

loop recursion algorithm is used, which is described as follows: 

 

 

For (k = m – 1) to(k >= 0) 
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 k = k+1 

end 

Set  

 

The gradient operator was approximated via a central difference approach. The central 

difference approximation is defined as  

 

   (1.5) 

where  denotes the perturbation on the -  parameter. Suitable values for  were 

determined by quantifying the sensitivity of the objective function, Eq. 1.4 with respect to each 

parameter in .  The objective function is more sensitive to perturbations of the damage 

location parameters, X and Y, than to orientation and size,  and a.  Therefore, perturbations  

and  are relatively small, defined here as 0.001, while perturbations  and  are 0.01. By 

considering the sensitivity of each component in , the gradient is better approximated. The 

sensitivity of the damage parameters is determined from Eq. 1.5, with respect to each variable. 

Since the full optimization problem being solved in this study has four variables, i.e. n=4, 

eight finite element simulations are required for the central difference gradient computation. 

However, the eight requisite simulations are independent of each other, and hence are run in 

parallel.  Therefore, the gradient computation time is reduced to the expense of one finite 

element simulation.  More precisely, in the case of the work presented in Section 3, this is the 

equivalent of about 15 seconds on a desktop with two quad-core AMD Opteron processors.  

The finite element models typically contained about 105 degrees of freedom, where 

characteristic quadratic triangular element edge lengths were about 1/20th of the crack size, a. 

After computing the gradient, a backtracking line search routine was implemented to find 

a step  that gives a sufficient decrease in the objective function, , in the sense of the 

Armijo rule holding, i.e. , where . In other words, 

a decrease in f of at least  is sought along the search direction.  The reader is referred to [9] for 

a detailed description of the backtracking line search algorithm utilized in this work.   

Numerical Examples 

Thus far, the objective function, , and the procedure by which it was minimized have been 

detailed. In this Section, the efficacy of the objective function and optimization procedure is 

tested on two numerical examples.  In the first example, Case I, only the damage location is 

determined, while in the second example, Case II, all four damage parameters are determined.  

In both test cases, the reference damage configuration was simulated, and strains were queried 

at virtual sensor locations to mimic measured strain sensor data. Figure 2 shows the two 

reference damage configurations. For both, the reference configurations were generated on a 

rectangular Aluminum plate (Young’s modulus =  psi and Poisson’s ratio=0.3) with height, h, 

and width, w.  As is illustrated in Figure 3 (also in Figure 5), displacement boundary conditions 

were used exclusively to apply deformation in the test cases.  Furthermore, the objective 

functional, Eq. 1.4, is dependent on the strain (not stress).  Therefore, the mechanical properties 

of the plate, i.e. Young’s modulus and Poisson’s ration, do not influence the convergence of the 

inverse problem for the presented test cases. 
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Case I: Center Crack Configuration

Y

X

h/2

w/2

Case II: Upper Right Crack Configuration

Y

X

3/4h

2/3w

Case II-C3: 50 Upper Right Damage Configuration Case II-C4: 15 Upper Right Damage Configuration

Y

X

3/4h

2/3w

50 

Y

X

3/4h

2/3w

15 

 

Figure 2: Reference damage configurations. Case I (left) and Case II (right). 

Case I: Determining Damage Location (n=2) 
The plate geometry, boundary conditions, reference damage and strain contours for Case I are 

shown in Figure 3.  The sensor locations and spacing used during the optimization procedure 

are shown as white dots superimposed on the plate. In Case I, only the damage location is 

determined:  X and Y are the only unknowns in the problem.  The damage size was fixed at a = 

0.167w, and the orientation was fixed at θ = 0.  This simplified problem illustrates how quickly 

the damage location can be determined for situations where crack size and orientation are not 

required. 

The initial guess for the damage configuration was set to the lower-left corner, while 

keeping the crack fully contained within the plate: edge cracks were not considered. The 

optimization procedure was started, and a stopping condition of obtaining an absolute objective 

function, Eq. 1.4, value less than 0.005 was set. The results are summarized in Table 1. Both Xr 

and Yr are determined to within 1 percent. Figure 4 illustrates the rate of convergence for this 

test problem. Convergence occurred in 10 iterations. 

 

Table 1:  Case I center damage configuration: Two-unknown variables 

 

Initial Guess Reference Optimization Result | % Difference | 

Xo  Yo Xr Yr Xf Yf Xerror Yerror 

0.25w  0.125h 0.500w  0.500h   0.498w  0.496h  0.4 0.8 
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Figure 3:  Reference strain field for Case I, a center crack with a = 0.167w, and θ = 0. The 

virtual strain sensor locations are shown as white dots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Convergence behavior for Case I.  The line fit through the data illustrates the 

convergence trend. 
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Case II: Determining Damage Location, Size, and Orientation Angle (n=4) 
The plate geometry, boundary conditions, reference damage, and strain contours for Case II are 

shown in Figure 5. The sensor locations used during the optimization procedure are shown as 

white dots superimposed on the plate. Case II investigates the full problem, where damage 

location, size, and orientation are all unknown. Case II contains damage located in the upper 

right corner, at X = (2/3)w and Y = (3/4)h, and with a = w/6, and θ = 50o, with respect to the x-

axis. As can be seen from Table 2a, both Xr and Yr are detected to within 1 percent.  It can be 

seen from Table 2b, that the damage orientation was detected to within 1 percent, while 

damage size was determined to within 5 percent.  Figure 6 illustrates the rate of convergence of 

the problem.  Comparing Figure 4 to Figure 6 illustrates the additional optimization iterations 

that are required to fully determine the damage characteristics, as opposed to determining only 

the damage location. In both Figures 4 and 6 it is seen that after approximately 5 iterations, the 

objective function value had been reduced to about 0.05.  In both Cases, I and II, that initial 

enhanced rate of decrease in the objective function was due to the convergence of the crack 

location parameters. In Figure 6, after the fifth iteration, the convergence rate is significantly 

reduced, which occurs when location has already converged, and only orientation and size are 

still being optimized. 

 

Table 2a:  Case II damage location determination results 

 

Initial Guess Reference Optimization Result | % Difference | 

Xo  Yo Xr Yr Xf Yf Xerror Yerror 

0.25w  0.125h 0.667w  0.750h   0.669w  0.746h  0.39 0.51 

 

Table 2b:  Case II damage size and orientation determination results 

 

Initial Guess Reference Optimization Result | % Difference | 

ao θo [rad] ar θr [rad] af θf [rad] ae θe

0.067w 0.1 0.167w 0.87 0.160w 0.86 4.5 0.96 
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Figure 5:  Reference strain field for Case II, a center crack with a = 0.167w, and θ = 0. The 

virtual strain sensors used are shown as white dots. 
 

 

Figure 6:  Convergence behavior for Case II.  The line fit through the data illustrates the 

convergence trend. 
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Discussion 

Investigating the use of a reduced sensor density 
In the method presented in [5], it was assumed that the measured data were known for the 

entire plate geometry. This is not a practical assumption. From the numerical examples 

presented in this paper, it is concluded that five columns of three sensors for a total of fifteen 

sensors were sufficient to detect the particular damage configurations to within one percent 

error. However, fifteen sensors may not represent the minimum possible density of sensors to 

ensure accurate damage detection in the numerical examples presented. This is especially true 

for applications where error in the determined damage configuration that is greater than one 

percent can be tolerated. Furthermore, determination of the damage size is directly linked with 

the sensor density. In other words, equivalent convergence behavior results in cases with much 

smaller or much larger cracks when the sensor density is scaled accordingly. 

Possible Gradient-Based Algorithm Shortcomings 
In our initial studies, it was observed that error due to numerical approximations were inherent in 

Eq. 1.4, triggered by the finite element simulations and central difference approximation, and 

could prevent a and θ from converging to the reference values. To study this further, a simplified 

problem was explored, where a and θ were the only unknown variables. The reference location 

was set to X = 0.5w, Y = 0.5h.  It was found that the damage orientation, θf, did not vary from its 

initial value, while the converged size, af followed Eq. 4.1 to within 4%. Eq. 4.1 was obtained by 

relating the direction cosines of the converged and reference values of the damage 

configuration. 
 af = ar [cos(θf)/ cos(θr)] (4.1) 

The reason for this is made obvious when the error surface is visualized, see Figure 7. 

The solid line represents Eq. 4.1. The filled circles are the converged values of af and θf. Figure 

7 illustrates that the gradient of Eq. 1.4 is relatively small with respect to the line defined by Eq. 

4.1. Hence, once the optimization stepped along that direction, the numerical approximation 

error began to overcome the true gradients. 

To overcome issues associated with numerical approximations inherent in Eq. 1.4, the 

magnitude of those errors must remain small with respect to the change in values of Eq. 1.4 

computed during the central difference computation. Because Eq. 1.3 is less sensitive to the 

damage size and orientation, size and location are particularly prone to this problem.  

At least one contribution to the numerical error results from querying strains at virtual sensor 

locations, which do not necessarily correspond to locations where strain is computed in the finite 

element model, i.e. the Gauss points. The strains at the sensor locations, therefore, must be 

determined using the finite element shape functions to extrapolate the Gauss point strains to the 

nodes then interpolate that nodal data to the sensor location, which introduces approximation 

error into Eq. 1.4. To minimize the error introduced by the shape functions, the mesh can be 

refined near the sensor locations. Figure 8 shows a one-dimensional slice of Figure 7 for two 

mesh refinements.  The objective function computed using the baseline mesh in this region is 

not smooth, and it is seen in this magnified sub-domain that the approximation error magnitude 

obscures the objective function gradient.  However, upon mesh refinement, the gradient 

surpasses the approximation error amplitude. In the finite element simulations for the two Cases 

presented above, the baseline mesh contained approximately 104 degrees of freedom, while the 

fine mesh contained approximately 105. 
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Figure 7:  Error surface for the two-variable problem with the solution for Eq. 4.1 shown as a 

solid line and the results from the gradient-based method shown as filled circles. 
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Figure 8:  Objective function for a two-unknown variables problem with a=0.147w for two mesh 

size restraints.  The red line illustrates the objective function values obtained from the refined 

mesh, while the black line illustrates those obtained from the coarse mesh.  
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An analytical solution would resolve much (or all) of the observed numerical 

approximation error. However, analytical solutions are only available for simplified geometries, 

and consequently, are not likely to be applicable in practical engineering applications.  Instead, 

it is best to determine the optimal step sizes used in the finite difference computation that will 

allow for convergence, even with the objective function errors due to the numerical 

approximations. However, as seen in the next Section, non-gradient based algorithms can also 

be used for accurate damage determination. Such methods can be less sensitive to the 

numerical errors illustrated in Figure 8 since they do not rely on computing a gradient. To 

illustrate this point, the following Section presents results of using a genetic algorithm to solve 

Case II, while employing the coarse baseline mesh model. 

Non-Gradient-Based Genetic Algorithm 

One alternative approach to overcome the issues with the gradient-based approach is to employ 

a genetic algorithm (GA). To compare with the gradient-based method presented above, the GA 

implemented in Matlab [10] was employed. The GA is a non-gradient based approach to solving 

highly nonlinear objective functions and is more robust in converging to the global minimum.  

The GA operates by selecting the trial points from the population that are the most fit, i.e. 

resulted in the lowest objective function value, and generates a new population of points based 

on the fittest members. For a complete discussion of the Matlab GA implementation see [10]. 

However, a major disadvantage to using a GA for this problem is, unlike the gradient-based 

technique, which generates a single trial point upon each iteration, the GA generates a 

population of points at each iteration. This results in the need to perform many more finite 

element simulations during the optimization procedure. Furthermore, since the trial points in the 

first iteration are randomly generated, there is no guarantee that the optimization will produce 

equivalent converged solutions upon repeated trials. In addition, there are several empirical 

parameters that must be defined for the GA to operate: population size, creation function, 

selection, mutation, and crossover.  

Population size is the number of trial points to solve upon each optimization iteration. It 

was found that a population size of 20 was large enough to provide sufficient variation diversity, 

while minimizing the number of function calls required.  The creation function and mutation 

define how the trial points are generated.  Here, by using a ‘feasible population’ creation 

function and ‘adaptive feasible’ mutation, the damage variables were guaranteed to stay 

contained within the upper and lower bounds. The selection approach defines how the fittest 

members from each population (iteration) are determined. The ‘tournament’ selection, used 

herein, chooses parents of the next generation by randomly sampling the current population and 

keeping only the fittest. Although, there were several combinations of possible inputs for these 

GA parameters, those discussed here provided the most consistent convergence behavior. In 

general, the most important consideration for the problem presented was found to be finding the 

empirical GA parameters that provide the ability to maintain diversity in the population after 

many generations.  

The GA, with the specified parameters, was applied to solve the Case II test problem 

from Section 3. The GA algorithm results for Case II are shown in Tables 3a and 3b.  From 

Tables 3a and 3b, it is seen that the GA resulted in damage detection accuracy similar to that of 

the gradient-based procedure. However, the cost of running O(2000) finite element analyses for 

the GA, as opposed to O(100) with the gradient-based technique exemplifies an advantage to 

using the gradient-based approach. 
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Table 3a: Genetic Algorithm Case II damage location determination results 

Initial Guess Reference Optimization Result | % Difference | 

Xo  Yo Xr Yr Xf Yf Xerror Yerror 

0.25w  0.125h 0.667w  0.750h   0.668w  0.752h  0.12 0.22 

 

Table 3b: Genetic Algorithm Case IIdamage size and orientation determination results 

Initial Guess Reference Optimization Result | % Difference | 

ao θo[rad] ar θr[rad] af θf[rad] aerror θerror[rad]

0.067w 0.1 0.167w 0.87 0.172w 0.904 3.4 3.7 

 

Summary 

In this paper, a strain-based damage optimization procedure combined with the finite element 

method was developed to determine existing damage size and location.  It was demonstrated 

that the strains measured at a limited number of sensor locations can be effectively used to 

determine the location, size, and orientation of damage.   

Numerical examples are presented to demonstrate a gradient-based optimization 

procedure in two cases. First, the damage location was estimated, while the damage size and 

orientation angle are held constant. It was shown that the damage location was estimated to 

within one percent for the damage configuration tested. Next, determination of the damage size, 

location, and orientation were tested. It was found that the location and orientation were 

determined to within one percent, while damage size was within 5 percent, for the cases tested.  

A discussion of possible issues involving the gradient step size and numerical approximation 

error was also provided. 

Finally, it was demonstrated that a Genetic Algorithm (GA) estimates all the damage 

parameters to accuracy similar to that of the gradient-based approach. The GA is investigated 

since it is likely to be relatively insensitive to numerical errors inherent in using finite element 

models to compute the objective function value upon each iteration. However, the GA requires a 

large number of finite element analyses to estimate the damage parameters and hence is 

computationally more expensive.  
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