Effects of atomic-scale structure on the fracture properties of amorphous carbon – carbon nanotube composites

Benjamin D. Jensen, Kristopher E. Wise
NASA Langley Research Center

Gregory M. Odegard
Michigan Technological University

13th U.S. National Congress on Computational Mechanics
July 26-30, 2015
Motivation

- Carbon nanotubes (CNTs) have high specific stiffness and strength
- Composite design with CNTs will be different than for carbon fibers
- New reactive force field ReaxFF can be applied to model fracture

Objectives

1. Estimate maximum CNT composite mechanical properties
2. Compare composite mechanical properties with:
 a. Singlewall vs multiwall CNTs
 b. Dispersed vs bundled CNT arrangements
 c. CNT-matrix crosslinking
Bond breaking with ReaxFF

Molecular dynamics using ReaxFF:
- Allows bond breaking and formation to be modeled
- Multibody interactions via bond order function
Modeling Fracture with ReaxFF

New ReaxFF$_{C-2013}$ parameterization fitted to:
- Diamond strained in the bulk and $<001>$ direction
- Graphene strained in the bulk and axial directions

In-house analysis of ReaxFF$_{C-2013}$ mechanical properties of diamond, graphene, amorphous carbon, and CNTs:
- Improved Poisson contraction response
- Elastic and fracture properties improved over previous ReaxFF$_{CHO}$ parameterization

**Jensen, B.D.; Wise, K.; Odegard, G.M., Submitted to J. Phys. Chem A
Simulation Setup

SWNT Array

SWNT Bundle

MWNT Array
Simulation Setup

1. Continuous/straight CNTs

2. Amorphous carbon (AC) matrix:
 – Relative simplicity
 – High mechanical properties

3. Three CNT arrangements:
 – SWNT array, MWNT array, SWNT bundle

4. Five crosslinking fractions for each system:
 – 0%, 5%, 10%, 15%, 20%
Equilibration Procedure

![Graph showing equilibration step with potential energy and temperature over time](image-url)
Results

Structuring of amorphous carbon at the CNT interface

Nanotube-centered cylindrical distribution functions, zeroed at the exterior nanotube wall
Results
Results
Results

Axial Specific Moduli

- Templating of the matrix substantially increases the axial modulus
- Dispersion of crosslink sites does not strongly influence axial modulus
Results

Axial Specific Moduli

- Templating of the matrix substantially increases the axial modulus
- Dispersion of crosslink sites does not strongly influence axial modulus
Results

- Multiwalled CNT resists CNT flattening, increasing the transverse modulus
- Lack of crosslinks within the bundle limits effectiveness of crosslinking for transverse stiffness
Results

- SWNT bundle system has lowest specific shear moduli in both directions
- Inner MWNT walls reinforce circular shape resulting in higher out-of-plane specific shear modulus
Results

Poisson’s Ratios

- Major Poisson’s ratio largest around 7% crosslinking
- MWNT array resists deformation of the circular cross-section resulting in lower minor ratios
SWNT array axial fracture (9% crosslinked)
MWNT array axial fracture (9% crosslinked)
SWNT bundle axial fracture (9% crosslinked)
Results

Specific Ultimate Stress

- Axial specific strength maximized around 4% crosslinking
- Transverse strength continually improved through crosslinking
Conclusions

Multiple data points for each system reflect impact of crosslinks to matrix
Multiple data points for each system reflect impact of crosslinks to matrix.
Summary

SWNT vs MWNT
- Interface templating has a substantial impact on the matrix properties, and SWNTs maximize the surface area per CNT mass
- Inner MWNT walls reinforce the circular cross section

Arrays vs bundle
- Very weak bonding within bundle reduces the properties that require transferring load through the bundle

Crosslinking
- Crosslinks decrease axial specific modulus, increase transverse modulus
- Axial specific ultimate strength is maximized around 4% crosslinking
- Transverse specific ultimate strength is continually increased with crosslinking
- Crosslinking may inhibit void nucleation at the CNT/matrix interface
Acknowledgements

NASA Langley Research Center
- Mia Siochi
- LaRC Nano Incubator Team

Michigan Technological University
- Matthew Radue
- S. Gowtham
- Cameron Hadden

Pennsylvania State University
- Adri van Duin (Penn. State)
- Sriram Srinivasan (Penn. State)

SUPERIOR, a high-performance computing cluster at Michigan Technological University, was used in obtaining some of results

Funded in part by Revolutionary Technological Challenges Program (GRANT NNX09AM50A)
Questions
Supplemental Slides
Individual CNT stress-strain responses within the maximally crosslinked systems

- Exterior/functionalized CNTs fracture earlier than interior/unfunctionalized
Results

Axial stress-strain response

Uncrosslinked vs Maximum crosslinking

<table>
<thead>
<tr>
<th>SWNT array</th>
<th>MWNT array</th>
<th>SWNT bundle</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time (ps)</th>
<th>Sp. Stress (GPa/(g/cm³))</th>
<th>True Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>0.075</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
<td>0.15</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>0.225</td>
</tr>
<tr>
<td>350</td>
<td>40</td>
<td>0.3</td>
</tr>
<tr>
<td>450</td>
<td>50</td>
<td>0.375</td>
</tr>
</tbody>
</table>
Transverse specific stress-strain response