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ABSTRACT 

 

The use of composite materials continues to increase in the aerospace 

community due to the potential benefits of reduced weight, increased strength, and 

manufacturability. Ongoing work at NASA involves the use of the large-scale 

composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). 

NASA is also working to enable the use and certification of composites in aircraft 

structures through the Advanced Composites Project (ACP).  The rapid, in situ 

characterization of a wide range of the composite materials and structures has become 

a critical concern for the industry.  In many applications it is necessary to monitor 

changes in these materials over a long time.  The quantitative characterization of 

composite defects such as fiber waviness, reduced bond strength, delamination 

damage, and microcracking are of particular interest.  The research approaches of 

NASA’s Nondestructive Evaluation Sciences Branch include investigation of 

conventional, guided wave, and phase sensitive ultrasonic methods, infrared 

thermography and x-ray computed tomography techniques. The use of simulation 

tools for optimizing and developing these methods is also an active area of research. 

This paper will focus on current research activities related to large area NDE for 

rapidly characterizing aerospace composites. 
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INTRODUCTION 

 

In recent years the aerospace community has increased the use of composites in 

aeronautic and space vehicles. As demonstrated by the Boeing 787’s use of composites 

[1], NASA’s Composite Crew Module [2] and in liquid hydrogen (LH2) cryogenic 

tanks [3], there is a push toward use of composites for primary structural components.  



As these composite structures become larger and more complex, nondestructive 

evaluation (NDE) techniques capable of quantifying and fully characterizing damage 

are needed.  The ability to quantitatively characterize damage in carbon fiber reinforced 

polymer (CFRP) composite components is required to enable damage progression 

models capable of yielding accurate remaining life predictions.  For example, the depth 

at which delaminations occur is directly related to how damage growth progresses [4].  

Therefore, a ‘full’ characterization of delamination damage needs to go beyond a 

quantitative measure of the in-plane area (size) of the damage, to also include the 

depth/ply at which the damage occurs.  For multilayered delamination damage, a full 

assessment would ideally include the depth and size of all delaminations, if possible.  A 

‘full’ damage characterization for other damage types may require different damage 

information.  Microcracking may be best characterized by a measure of microcrack 

density correlated to depth through the material, while fiber waviness may require a 

statistical measure of the affected locations and corresponding ranges in the angle of 

unintended in-plane or out-of-plane alignment/waviness of fibers (i.e., a ‘waviness 

angle’ range) [5, 6] . 

The challenge of acquiring quantitative NDE damage characterization for aerospace 

composites is compounded not only by the size of the structure and complexity of the 

damage types occurring in composites, but also by the complex geometries of composite 

components required for aerospace applications.  The research approaches of NASA’s 

Nondestructive Evaluation Sciences Branch (NESB) include investigation of 

conventional, guided wave, and phase sensitive ultrasonic methods, infrared 

thermography and x-ray computed tomography techniques. The use of simulation tools 

for optimizing and developing these methods is also an active area of research. This 

paper will focus on research activities related to large area NDE for rapidly 

characterizing aerospace composites. 

 

INSPECTION TECHNOLOGIES 
 

Flash Infrared Thermography 

 

Flash infrared thermography has been used extensively as a large area rapid 

inspection technology for composite structures. The flash thermography system 

typically used by NESB is the commercially available Echotherm® system from 

Thermal Wave Imaging, Inc.  The system features a flash hood containing a 640 x 512 

element FLIR SC6000 infrared (IR) camera with two 4800-Joule xenon photographic 

flash tubes.  The hood has dimensions of 36.8 cm wide by 26.7 cm deep by 40.6 cm tall 

and is configured such that the IR camera views the inspection surface directly.  The 

flash produces an energy density of 7.15 joules per square centimeter at the mouth of 

the hood (based on the final temperature increase of a reference specimen and the 

nominal thermal properties of that reference). The flash lamps provides a uniform 

illumination of within 10% across an area of 24.8 cm x 32.7 cm (for a flat reference 

standard at the mouth of the hood as determined from measurements of the temperature 

rise of the reference material).  The flash creates an initial temperature increase of the 

inspection surface of less than 10°C. A photograph of the flash thermography system is 

shown in figure 1. 

The hood is connected to a base station which houses the system computer and 

power sources for the various components.  Thermographic inspection is 



accomplished by placing the hood on the section of material to be inspected.  The 

bottom of the hood completely surrounds or sits atop the material, depending on the 

dimension of the specimen.  The flash lamps are triggered either by operator controls 

on the hood or by the computer.  Thermographic images of the specimen are captured 

by the IR camera for a predetermined amount of time and stored in the computer for 

further analysis.  The camera’s noise equivalent temperature difference, cited by the 

manufacturer, is 0.025°C. The detector array operates in the 3 to 5 micrometer 

wavelength range.  External optics, consisting of a wide-angle lens (25mm focal 

length), using germanium optical elements, are used to increase the system field-of-

view to 21.7º horizontally and 17.5º vertically. 

Figure 1b shows an implementation of flash thermography for large area 

composite inspection.  The test specimen is a composite cylinder 10m in diameter 

and 4m in height, built as 5 panels connected with bonded joints.  Inspection of the 

cylinder required approximately 10 hours per side (interior and exterior) and yielded 

250 GB of thermal data.  The thermal system is translated over the entire surface of 

the specimen using a custom scanning rail system that follows the curvature of the 

cylinder.  Data acquisition consists of positioning the camera and hood, triggering 

the flash heating, collecting data for 15s after the heating, storing the data and 

indexing the scanner to the next inspection location.  Total inspection time per 

location is approximately 45s.  Data analysis was performed using Principal 

Component Analysis (PCA) with model derived eigenvectors [7, 8].  This approach 

reduced the processing time per data set (~250 MB) to less than 1s, which is less than 

the time required to move the camera and hood to the next inspection location.  As 

an example of typical results figure 2 shows a PCA processed mosaic of the 

inspections results from one of the joints on (2a) the inner mold line of the specimen 

and the same joint imaged from (2b) the outer mold line of the specimen.  The dark 

regions of figure 2a appear to be areas of excess resin in the joint, while the light 

regions (a few of which are indicated by arrows) are consistent with areas of poor 

bonding.  The outer mold line results of figure 2b indicates a defect free joint. 

 

   

                            (a)                                                                    (b) 

Figure 1. (a) Photograph of the flash thermograph system. (b) System configured for large area 

inspection of a composite test article. 



 

 

(a) 

 

(b) 

Figure 2.  Mosaic images showing PCA processed thermal results for joint number 2 from (a) the 

inner mold line and (b) the outer mold line. 

 

Line Scan Thermography 

 

A variation of flash thermography that has shown considerable promise as a large 

area inspection technique is the Thermal Line Scanner (TLS), a NASA Langley 

developed quartz thermographic inspection system [9, 10].  This system utilizes a line 

heat source, typically a commercially available 3000W quartz tube mounted in front of 

an elliptical mirror which is used to focus the light to a width of 0.6 cm.  The heat source 

and an IR imager (described above) are attached to a commercial linear scanning bridge 

and translated at a constant velocity while the position of the specimen remains fixed.  

Quantitative time based analysis requires synchronization between the IR imager, the 

heat source and the scanning apparatus. This synchronization is achieved by computer 

control of the application of heat, motion of the scanner and data acquisition. 

This implementation enables the rapid inspection of large composite structures. 

From the output of the IR camera, an image is reconstructed which yields the induced 

temperature changes at fixed distances behind the line heat source.  Because the heat 

source is a narrow line that is moving, each region of the specimen (corresponding to 

the width of the line) is only heated for a brief period of time. Since the velocity of the 

camera is constant during the inspection interval, the fixed distances are equivalent to 

fixed times after heating and are analogous to data acquired via flash thermography. 

This method has several distinct advantages over conventional flash thermography. 

First, since the IR heater is held close to the object of interest, a more efficient coupling 

of the energy into the specimen is possible, thus the power requirements are reduced 

while preserving sensitivity. This method also enables very high inspection rates, for 

example in graphite/epoxy composites, continuous speeds of 5-10 cm/s can be achieved.  

An additional advantage is that for some applications a linear array of detectors can 

replace the IR camera, significantly reducing the cost of the system and the data 

acquisition and storage requirements. 

Figure 3 shows a schematic diagram and the laboratory implementation of the TLS 

scanning an aircraft fuselage specimen.  Figure 4a shows the typical results of 

performing TLS on a 10-ply, 30.5 cm x 30.5 cm graphite-epoxy composite plate with 

square delaminations at various depths. The size of defects ranged from 3.81 to 1.27 



cm. The shallowest subsurface defects were between plies 1 and 2 while the deepest 

defects were between plies 5 and 6 [11].  Finally, figure 4b shows an artist’s conception 

of the implementation of TLS on the composite cylinder discussed previously.  It is 

estimated that using TLS to perform the inspection of this cylinder could reduce the 

inspection time by 85% to 90 minutes per side. 

 

 

 

 

              
(a)                                                             (b)

Figure 3.  (a) Block diagram of thermal line scanner experimental setup and (b) photograph of 

laboratory implementation. 

 

 

                
     (a)                                                               (b) 

 
Figure 4.  (a) Typical results of inspection of a graphite-epoxy specimen using TLS and (b) an 

artist’s conception of TLS on a large composite cylinder described previously. 

 

Large Area Ultrasonics 
 

Ultrasound is a valuable technology for the nondestructive inspection of aerospace 

structures. In the majority of situations, an ultrasonic probe must be coupled to the 

structure by physical contact. A fluid medium promotes complete coupling of the 

acoustic wave into the material. Often, solid coupling devices such as stand-offs or 

wedges provide time delay and incident angle control of the sound waves into the part. 

Solid stand-offs and wedges can be shaped to match planar and fixed curvature surfaces. 



However, ultrasonic coupling problems occur when surfaces deviate from the shape of 

a solid coupling device. Furthermore, the ultrasonic beam from a contact probe is 

typically in the near field of the transducer and unfocused. In a given application, the 

lateral resolution obtained may be inadequate for the required measurement.  Therefore, 

for large area, high speed applications NASA Langley has chosen to implement a 

captive water column coupling approach.  This provides coupling that is similar to an 

ultrasonic water squirter system without requiring a mechanism for delivering and 

capturing the constant stream of water 

Figure 5a shows a photograph of a single-element transducer with a captive water 

column.  The transducer is sealed into a water-tight probe housing. Water is captured in 

the probe housing with a flexible membrane selected to produce very little ultrasonic 

reflection.  The membrane is pressed directly against the inspection surface and 

mechanically scanned. Usually, a mist of water is required to wet the surfaces and 

promote ultrasonic coupling.  A large area, high speed, computer controlled scanning 

system allows for automated inspections of large specimens.  Scanning speeds are a 

maximum of 2 m/s (typical scan speed are 0.3 – 0.6 m/s) with full waveform capture 

(16-bit) of the ultrasonic signal every 0.25mm. 

Figure 5b shows an example of pulse-echo C-scan results from the inspection of a 

large composite specimen, approximately 2.4 m x 2.4 m in size.  The test article is a 

composite sandwich structure with 6-ply graphite/epoxy face sheets and an aluminum 

honeycomb core.  The inset image is a close up, high resolution scan, of a delamination 

between the face sheet and the core.  Total acquisition time for the captive water column 

ultrasonic inspection was approximately 45 minutes per side. 

 

 

 

 

               
                        (a)                                                              (b) 

Figure 5.  (a) A photograph of a single-element transducer with a captive water column and (b) C-

scan results from the inspection of a large honeycomb sandwich composite specimen with an inset 

showing a skin-to-core delamination. 

 
 

 

 



COMPUTATIONAL NDE 
 

Simulation tools have the potential to create a cost-effective method for developing 

and optimizing damage characterization techniques for composites.  Such tools enable 

a method for predicting inspectability of advanced composite components during the 

design stage.  For example, simulation tools could be used to establish confidence in an 

NDE technique’s ability to inspect complex joints, hard to reach locations, characterize 

complex damage and/or to inspect large areas [12]. 

To demonstrate the capability of simulating complex damage in a composite 

material, a 26-ply quasi-isotropic IM7/8552 composite laminate coupon was fabricated 

at NASA Langley to be used for the purpose of growing enclosed impact-like 

delamination damage.  The composite coupon is 152 mm by 65 mm by 3.23 mm.  

Details of the damage growth setup can be found in a prior paper by Rogge and Leckey 

[13].  The damaged sample was scanned at a resolution of 23.4 μm using microfocus x-

ray computed tomography (microCT).  Figure 6a shows the microCT results scaled such 

that only the delamination is visible.  The interaction of guided ultrasonic waves with 

the delamination damage defined by the microCT was then modeled using custom 

developed 3D anisotropic elastodynamic finite integration technique (EFIT) software 

[14].  For straight-forward one-to-one mapping of the damage into the simulation, and 

to capture all details of the delamination damage, the EFIT simulation used a step size 

that is equal to the microCT data resolution (23.4 μm).  Figure 6b shows a 2D 

representation of a through-thickness slice from the EFIT simulation results at four 

different time steps and demonstrates that the complex geometry of the damage must be 

taken into account in order to capture the scattering and mode conversion that occurs as 

guided waves interact with the delaminated region.  Modeling such a complex 

delamination as a simple circular void would not accurately capture this behavior.  

Analysis of the simulation results has led to an approach for the detection of hidden 

multilayer delaminations [15]. 

 

 

 

 

    
(a)                                                                   (b) 

 
Figure 6. (a) MicroCT results showing the complex nature of impact damage in a composite 

specimen and (b) simulation of guided ultrasonic wave in the presence of complex delamination 

damage. 



 

Finally, these simulation tools can also be used to develop new rapid and 

quantitative methods to analyze NDE data.  For example, PCA has been used 

extensively for the reduction of flash IR thermography data.  Typical application of PCA 

to the reduction of transient thermographic data consists of calculating the principal 

components of the temporal data through singular value decomposition (SVD) of the 

experimental data itself.  For example, Rajic [16, 17] and Valluzzi [18] both use PCA 

as a contrast enhancement technique for defect detection. Genest [19] and Vavilov [20] 

provide comparisons between PCA and various other data reduction techniques for 

defect sizing.  Zalameda [21] discusses PCA’s use for temporal compression of the 

thermal data.  PCA was used to analyze thermal “flying-spot” data by Hermosilla-Lara 

[22] for detection of open cracks in metallic specimens.  Finally, Marinetti [23] suggests 

the use of an experimentally derived training set to calculate the principal components. 

While this technique is quite effective in reducing thermal data, the singular value 

decomposition require for PCA can be computationally intense especially with large 

three-dimensional arrays of thermal data typically produced during an inspection.  

Additionally, PCA can experience problems when very large defects are present 

(defects that dominate the field-of-view).  The first vector accounts for as much of the 

variability in the data as possible therefore if defective material dominates the field of 

view, the first eigenvector may reflect the response of the defect, not the “good” 

material. If material responses captured by the first eigenvector are considered to be 

nominal material response, this results in a misclassification of the defect region. To 

increase the processing speed and eliminate issues arising from the presence of large 

defects, an alternative method of PCA is being pursued where a fixed set of 

eigenvectors, generated from an analytic model of the thermal response of the material 

under examination, is used to process the thermal data from composite materials.  Either 

a one dimensional multilayer analytic model or a 2D finite element model is used and a 

set of eigenvectors are then numerically generated from this array of responses [7, 8].  

Figure 2, discussed earlier, shows the results achieved using this model based analysis 

approach.  In this example, calculation of each PCA image (each mosaic of figure 2 

contains 10 images) using the model derived eigenvectors took less than 1sec. in 

Matlab®, whereas a full SVD calculation of the eigenvectors and back projection on the 

same data can take more than 1min. 
 

CONCLUSIONS 
 

This paper reviewed ongoing NDE inspection research and simulation tool 

development within the NASA NESB at Langley Research Center.  The paper gave an 

overview of a few of the technologies under development for rapid, large-area 

inspection of complex composite structures.  Examples were given of how those 

technologies are being applied to characterize the state of composite structures.  

Additionally, a discussion of the potential impact of realistic simulation tools for NDE 

was presented, including examples incorporating realistic composite damage and model 

based data analysis for faster, more reliable results.  A number of other techniques are 

also being explored by NESB for quantitative characterization of composite structures 

which were not discussed in this paper.  For example current research includes the use 

of fiber optic, wireless surface acoustic wave and acoustic emission sensors for 

structural health monitoring (SHM) of large composite components, eddy current 



inspection of high temperature ceramic composites as well as terahertz and microwave 

inspection of non-conducting composite materials.  Finally, NESB is investigating how 

data from multiple NDE and/or SHM techniques applied to the same structure could be 

combined to provide a fuller understanding of the overall health of component under 

inspection. 
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