Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion

Peerawan Wiwattananon, National Institute of Aerospace, (in Residence at NASA Langley Research Center, USA)

Peerawan.Wiwattananon@nasa.gov

Robert G. Bryant, NASA Langley Research Center, USA

William W. Edmonson, North Carolina Agricultural and Technical State University, NC, USA

William B. Moore, Hampton University, VA, USA

Jared M. Bell, National Institute of Aerospace, VA, USA

4th Interplanetary CubeSat Workshop, Imperial College London, United Kingdom, 26-27 May, 2015
Solar Sail Missions

Heliogyro Solar Sail Mission: 2-bladed 6U Form Factor Deployment Technology

Current Focus

Benefits

Summary

Square-Shaped Solar Sailing ➔ Heliogyro Solar Sail

1969

1993
Znamya [1]

1993

2010

2015

Future Mission

NEA Scout
LUNAR Flashlight
Heliogyro Solar Sail
2-Bladed Heliogyro Orbital Platform in Space (HOPS^2B)

Image Credit: NASA/JPL
IKAROS: Image Credit: JAXA [3]

1969

1993
Znamya [1]

2010

2015

 NanoSail-D
Image Credit: NASA

2-Bladed Heliogyro Orbital Platform in Space Mission (HOPS2B)

- **Anti-Jamming Technology**
- **Re-Usable Locking/Release Mechanism**
- **Solar Sail: 2 μm thick Polyethylene Naphthalate (PEN)**
- **Large Solar Sail Area (~ 720 m2)**

Heliogyro-Configured: 6U Form Factor

- No fuel
- Mass ~ 8 kg
- Retractable Solar Sail System: Control CM/CP*, avoid thermal heat flux

CM = center of mass, CP = center of pressure

HOPS2B Mission

Interplanetary Travel

Validate and Demonstrate Heliogyro Solar Sail Deployment/Retraction
Attitude Control
Station-Keeping
Acceleration

HOPS2B – Deployment Technology & Concept

Right Angle Gearhead Deployment Motor

Solar Sail Roll

Solar Sail Spindle

Bearing

Solar Sail Roll

Control Unit:
Communication, Data Handing, ADCS, EPS, Instrument Package

Camera & Uncooled Microbolometer

Photodiode Linear Speed Sensor

Tip Rod Lock Mechanism

Camera & Uncooled Microbolometer

Guiding Gap

Solar Sail Tip Rod

Background Image Credit: NASA
HOPS2B – Deployment Technology & Concept

Solar Sail
Image Credit: NASA

Rolling of Solar Sail
Image Credit: NASA

Motor
Image Credit: NASA

Tip Rod
Image Credit: NASA

To scale model
Image Credit: NASA

Background Image Credit: NASA
HOPS2B – Hardware + Expected Performance

Hardware

<table>
<thead>
<tr>
<th>Components</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Angle Gearhead Deployment Motors</td>
<td>CDA Intercorp, USA</td>
</tr>
<tr>
<td>Spacecraft Door Release Mechanism</td>
<td>Avior Control Technologies, Inc, USA</td>
</tr>
<tr>
<td>Photodiode Linear Speed Sensor</td>
<td>Aeroflex, USA</td>
</tr>
<tr>
<td>Coated Solar Sail 2 μm thick</td>
<td>Astral, USA</td>
</tr>
<tr>
<td>Uncooled Microbolometer</td>
<td>Sofradir EC, Inc., USA</td>
</tr>
<tr>
<td>Hybrid-Ceramic Bearings</td>
<td>CEROBEAR GmbH, Germany</td>
</tr>
<tr>
<td>Batteries</td>
<td>Clyde Space, UK</td>
</tr>
<tr>
<td>Solar Panels</td>
<td>Vanguard Space Technologies, USA</td>
</tr>
</tbody>
</table>

Expected Performance

<table>
<thead>
<tr>
<th>Solar Sail Mission</th>
<th>IKAROS1</th>
<th>NanoSail-D2</th>
<th>LightSail-13</th>
<th>CubeSail4</th>
<th>HOPS2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Custom</td>
<td>3U</td>
<td>3U</td>
<td>3U</td>
<td>3U</td>
</tr>
<tr>
<td>Total sail area [m2]</td>
<td>200</td>
<td>10</td>
<td>32</td>
<td>25</td>
<td>717</td>
</tr>
<tr>
<td>Total mass [kg]</td>
<td>310</td>
<td>3.99</td>
<td>5</td>
<td>3</td>
<td>~8</td>
</tr>
<tr>
<td>Characteristic Acceleration* [mm/s2]</td>
<td>0.0053</td>
<td>0.02</td>
<td>0.05</td>
<td>0.068</td>
<td>0.74</td>
</tr>
</tbody>
</table>

*Calculated at 1 AU

HOPS2B – Current Focus

- **Navigation Control** – attitude determination and control, navigation of the spacecraft
- **Deployment and Spin Control** – deployment of solar sails, spin rate of the spacecraft
- **Location and Speed** – location of the spacecraft and its speed
- **Communication** – communication between the spacecraft and the Earth
- **Dynamics** – dynamics of the solar sail and spacecraft

Benefits

• Future spacecraft can have a heliogyro-configured solar sail installed on board for fuel-less in-Space navigation and propulsion.

• Orbiting CubeSat heliogyro(s) can be sent to assist spacecraft that require additional power to achieve a different orbit.

• Missions: long mission period such as interplanetary travel, multi-missions, station keeping, asteroid field mapping, and interception of micrometeoroids can be performed.

• Perform a precision de-orbit by imposing solar/aerodynamic drag. This has been proven by analysis to be a more cost effective approach to de-orbiting than carrying extra fuel to achieve the same goal.1,2

\begin{itemize}
\item 1 Vaios Lappas et al., CubeSail: A low cost CubeSat based solar sail demonstration mission, Advances in Space Research 48 (2011) 1890–1901
\item 2 Walker et al., Update of the ESA Space Debris Mitigation Handbook, ESA, 14471/00/D/HK
\end{itemize}

Background Image Credit: NASA \url{http://www.nasa.gov/mission_pages/hubble/multimedia/index.html?id=355696}
2-Bladed Heliogyro Orbital Platform in Space Missions (HOPS²B)

Summary

• Deployment Demonstration: Polar Orbit beyond 35,000 km
 - Validate and Demonstrate Heliogyro Solar Sail Deployment/Retraction
 - Attitude Control
 - Station-Keeping
 - Acceleration
 - Interplanetary Travel

• Heliogyro-Configuration
 - 6U CubeSat Form Factor, ~ 8 kg
 - Solar Sail Fully Deployed Area ~ 720 m²
 - Calculated Characteristic Acceleration ~ 0.74 mm/s²
 - Re-Usable Locking/Release Mechanism
 - Solar Sail Anti-Jamming
