Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

Yaqian Duan1, Leni Moldovan2, Rehae C. Miller2, Eleni Beli3, Tatiana Salazar4, Sugata Hazra5, Jude Al-Sabahi6, KV Chalam4, Sneha Raghunandan4, Ruchi J. Vyas4, Patricia Parsons-Wingerter5, Gavin Y. Oudit6, and Maria B. Grant1,2

1 Department of Integrative and Cellular Physiology, Indiana University School of Medicine, Indianapolis
2 Department of Ophthalmology, Indiana University School of Medicine, Indianapolis
3 Department of Internal Medicine, University of Utah, Salt Lake City
4 Department of Ophthalmology, University of Florida, Jacksonville, Florida
5 Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field CA
6 Department of Medicine, University of Alberta, Canada

Abstract

Purpose: In diabetes, the impaired vasoreparative function of circulating angiogenic cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) “ACE2/Angiotensin-(1-7)/Mas” plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy.

Methods: Study subjects (n=43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescent angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expression in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by their migration ability toward CXCL12 using the QCM 5μM 96-well chemotaxis cell migration assay.

Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p=0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetes without DR, while being reduced in NPDR compared to controls (p=0.0002). This indicates a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7) migratory ability to CXCL12 was restored (p=0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls.

Conclusions: These data suggest the protective RAS within CACs may help maintain their vasoreparative potential. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR.

Background

Endothelial dysfunction is an essential pathological change in the process of diabetic retinopathy
CACs play a vital role in endothelial repair and new vessel growth by homing to the injured vasculature and providing paracrine factors
In diabetes with microvascular complications, CD34+ CACs are dysfunctional
The protective renin-angiotensin system (RAS) plays an important role in restoring the function of diabetic CACs

Methods

Study subjects (n=43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR)
CD34+ CACs were isolated from the peripheral blood mononuclear cells by using the EasySep™ human CD34 positive selection kit
RAS gene expression levels were measured by qPCR
Migration function of CACs was analyzed by measuring their ability to migrate towards CXCL12 using the QCM 5μM 96-well chemotaxis cell migration assay.
Fundus photography and fluorescent angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects

Results

Characteristics of Control and Diabetic Individuals

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>6/7</td>
<td>13/17</td>
</tr>
<tr>
<td>Age</td>
<td>39±13</td>
<td>60±11</td>
</tr>
<tr>
<td>HE1AT</td>
<td>4.8</td>
<td>6±2.0</td>
</tr>
</tbody>
</table>

Retinopathy | No NPDR | Moderate NPDR | Severe NPDR | PDR | *p<0.05 compared to no treatment group; #p<0.05 compared to no treatment group

Neutrophilia | 1 | 7 |
Nephropathy | 1/1 | 5/1 |
Hypertension | 1/1 | 5/5 |
Hypercholesterolemia | 1 | 16 |

Activation of Protective RAS Genes in CACs from Diabetic Individuals with No Diabetic Retinopathy

<table>
<thead>
<tr>
<th>RAS Gene</th>
<th>Control</th>
<th>NPDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>2±0.2</td>
<td>2±0.1</td>
</tr>
<tr>
<td>ACE2</td>
<td>2±0.2</td>
<td>2±0.1</td>
</tr>
</tbody>
</table>

Angiography

VESGEN Arteries
VESGEN Venous

Figure 1. mRNA levels of RAS genes within CACs. * P < 0.05 Compared to control; ** P<0.05 Compared to DM-NC

Angiotensin System (RAS) on The

Figure 2. Effects of Ang-(1-7) on migration of CD34+ cells toward CXCL12 in Severe NPDR

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CXCL12</th>
<th>Adj. Ang-1-7 100nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NPDR</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Moderate NPDR</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 3. Effects of Alamandine on migration of CD34+ cells toward CXCL12. *p<0.05 compared to no treatment group; #p<0.05 compared to CXCL12 group.

Vascular Changes of Retinopathy by Vessel Generation (VESGEN) Analysis

Figure 4. Vascular Generation Analysis of Different Stages of Retinopathy.

Conclusions

The protective RAS axis is activated within CACs from diabetic patients with no microvascular complications. However, a possible loss of compensation of the protective RAS is observed at the stage of NPDR.
CACs from the diabetic patients with moderate and severe NPDR have decreased migration toward CXCL12 compared with healthy subjects.
Angiotensin 1-7 treatment improved the migration function of CACs from severe NPDR.
The VESGEN analysis helps to interpret the presence of retinal repair in small vessels.