Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

Yaqian Duan1, Lena Moldovan2, Rehae C. Miller1, Eleni Beli1, Tatiana Salazar1, Sugata Hazra1, Jude Al-Sabahi1, KV Chalam1, Sneha Raghunandan1, Ruchi J. Vyas3, Patricia Parsons-Wingerter4, Gavin Y. Oudit3, and Maria B. Grant1,2

1 Department of Integrative and Cellular Physiology, Indiana University School of Medicine, Indianapolis
2 Department of Internal Medicine, Indiana University School of Medicine, Indianapolis
3 Department of Ophthalmology, Indiana University School of Medicine, Indianapolis
4 Space Life Sciences Research Branch, NASA Ames Research Center, Moffet Field CA
5 Department of Medicine, University of Alberta, Canada

Abstract

Purpose: In diabetes, the impaired vasoreparative function of circulating angiogenic cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) “ACE2/Angiotensin-(1-7)Mas” plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy.

Methods: Study subjects (n=43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS expression in CACs was measured by qPCR. The vasoreparative function of CACs was assessed by their migration ability toward CXCL12 using the QCM 5μM 96-well chemotaxis cell migration assay.

Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p=0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while being reduced in NPDR compared to controls (p=0.0002). This indicates a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7) migratory ability to CXCL12 was restored (p=0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls.

Conclusions: These data suggest the protective role of ACE2/Angiotensin-(1-7) in mediating vasoreparative potential of CACs. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR.

Background

- Endothelial dysfunction is an essential pathological change in the process of diabetic retinopathy
- CACs play a vital role in endothelial repair and new vessel growth by homing to the injured vasculature and providing paracrine factors
- In diabetes with microvascular complications, CD34+ CACs are dysfunctional
- The protective renin-angiotensin system (RAS) plays an important role in restoring the function of diabetic CACs

Methods

- Study subjects (n=43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR)
- CD34+ CACs were isolated from the peripheral blood mononuclear cells by using the EasySep™ human CD34 positive selection kit
- RAS gene expression levels were measured by qPCR
- Migration function of CACs was analyzed by measuring their ability to migrate towards CXCL12 using the QCM 5μM 96-well chemotaxis cell migration assay.
- Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects

Results

- Activation of Protective RAS Genes in CACs from Diabetic Individuals with No Diabetic Retinopathy
- Angiotensin-1-7 Treatment Enhanced The Migration of Impaired CACs toward CXCL12 in Severe NPDR
- Vascular Changes of Retinopathy by Vessel Generation (VESGEN) Analysis

Conclusions

- The protective RAS axis is activated within CACs from diabetic patients with no microvascular complications. However, a possible loss of compensation of the protective RAS is observed at the stage of NPDR.
- CACs from the diabetic patients with moderate and severe NPDR have decreased migration toward CXCL12 compared with healthy subjects.
- Angiotensin-1-7 treatment improved the migration function of CACs from severe NPDR.
- The VESGEN analysis helps to interpret the presence of retinal repair in small vessels.