Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites

Part II: Finite Element Model

H. Alicia Kim1, Robert Hardie2, Vesselin Yamakov3, Cheol Park4

1Associate Professor, UC San Diego, CA, USA
2University of Bath, UK
3National Institute of Aerospace, VA, USA
4NASA Langley Research Center, VA, USA
Background: Boron Nitride Nanotube (BNNT)

- Our interest is in piezoelectric properties.
- Nitrogen atoms are more electronegative than boron atoms.
- Polarisation is cancelled out due to chiral symmetry.
- Strain induces polarisation field.
- Polarisation creates electric charge across a nanotube.
- Inherently multiscale
Research Aim

To investigate a suitable fidelity of a Representative Volume Element (RVE) Finite Element Model (FEM) of multiple Boron Nitride Nano Tubes (BNNTs) in a matrix.
2D FE Model

- Uniform distribution
- Random distribution
- Volume fraction

Amount of stiff material (BNNT)

Unit cell

- 2D area, 3D solid cylinder, 3D hollow tubes
- Reference – Analytical solution for finite length cylindrical inclusions at many orientations by Tandon and Weng (1976)
Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>BNNT</th>
<th>Matrix Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus, E (GPa)</td>
<td>900</td>
<td>1.8</td>
</tr>
<tr>
<td>Poison’s ratio</td>
<td>0.3</td>
<td>0.39</td>
</tr>
<tr>
<td>Axial piezoelectric constant, e (C/m2)</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Dielectric constant, b (pF/m)</td>
<td>159.3</td>
<td>79.6</td>
</tr>
</tbody>
</table>

Elasticity Constant for 2D Models
Elasticity Constant for 2D Models
3D FE Model

- Coupled field tetrahedral elements
- BNNTs modelled as:
 1) Solid cylinders
 2) Hollow tubes

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_{12} \\
D_1 \\
D_2 \\
\end{bmatrix} = \begin{bmatrix}
C_{11}^* & C_{12}^* & 0 & -e_{11}^* & -e_{11}^* \\
C_{21}^* & C_{22}^* & 0 & -e_{11}^* & -e_{11}^* \\
0 & 0 & C_{66}^* & -e_{11}^* & -e_{11}^* \\
0 & 0 & b_{11}^* & 0 & \\
0 & 0 & 0 & b_{22}^* & \\
\end{bmatrix} \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_{12} \\
E_1 \\
E_2 \\
\end{bmatrix}
\]
Young’s Modulus
Elasticity Constant, C_{11}
Elasticity Constant, C_{12}
Elasticity Constant, C_{22}
Elasticity Constant, C_{66}
Piezoelectric Constant

![Graph showing the relationship between piezoelectric constant (e_{11}) and volume fraction. Different distributions are indicated by different line styles and markers: 2D uniform distribution, 2D random distribution, 3D solid cylinders, and 3D hollow tubes.]
Conclusion

• 2D uniform distribution model can offer a first order understanding of the effective elastic and piezoelectric properties
• Volume fraction based on filled solids was most appropriate for 2D model
• Differences between 3D models with solid cylinders and with hollow tubes insignificant
• C_{11} and e_{11} most sensitive to the volume fraction