Proving Program Termination with Matrix Weighted Digraphs

Aaron Dutle

NASA Langley Research Center

28th Cumberland Conference on Combinatorics, Graph Theory & Computing
May 15, 2015
Where I work

“Formal Methods” refers to mathematically rigorous techniques and tools for the specification, design and verification of software and hardware systems.

Formal methods provide a means to symbolically examine the entire state space of a digital design (hardware or software) and establish correctness or safety properties that are true for all possible inputs.
What I do

- PVS is a tightly coupled specification language and interactive theorem-prover used extensively by the formal methods group.
Termination in PVS

Prove termination in two steps.

- Provide a function on the inputs into a **well-founded order**. (A WFO is a set S and a relation $<$ with no infinite decreasing chain.)
- Show that every recursive call “lowers” the value of the function.
An Example

For $m, n \in \mathbb{N}$, let

$$\text{Ack}(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 \text{Ack}(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 \text{Ack}(m - 1, \text{Ack}(m, n - 1)) & \text{otherwise.}
\end{cases}$$

Three calls, so need some measure where:

- $(m, n) > (m - 1, 1)$,
- $(m, n) > (m - 1, \text{Ack}(m, n - 1))$,
- $(m, n) > (m, n - 1)$.

An Example

For $m, n \in \mathbb{N}$, let

$$
\text{Ack}(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 \text{Ack}(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 \text{Ack}(m - 1, \text{Ack}(m, n - 1)) & \text{otherwise.}
\end{cases}
$$

Three calls, so need some measure where:

1. $(m, n) > (m - 1, 1)$,
2. $(m, n) > (m - 1, \text{Ack}(m, n - 1))$,
3. $(m, n) > (m, n - 1)$.

Lexicographic order on pairs works...
An Example

For $m, n \in \mathbb{N}$, let

$$Ack(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 Ack(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 Ack(m - 1, Ack(m, n - 1)) & \text{otherwise.}
\end{cases}$$

Three calls, so need some measure where:

- $(m, n) > (m - 1, 1)$,
- $(m, n) > (m - 1, Ack(m, n - 1))$,
An Example

For $m, n \in \mathbb{N}$, let

$$\text{Ack}(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 \text{Ack}(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 \text{Ack}(m - 1, \text{Ack}(m, n - 1)) & \text{otherwise.}
\end{cases}$$

Three calls, so need some measure where:

- $(m, n) > (m - 1, 1)$,
- $(m, n) > (m - 1, \text{Ack}(m, n - 1))$,
- $(m, n) > (m, n - 1)$.

Lexicographic order on pairs works...
An Example

For $m, n \in \mathbb{N}$, let

$$\text{Ack}(m, n) = \begin{cases} n + 1 & \text{if } m = 0 \\ \text{Ack}(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\ \text{Ack}(m - 1, \text{Ack}(m, n - 1)) & \text{otherwise.} \end{cases}$$

Three calls, so need some measure where:

- $(m, n) > (m - 1, 1)$,
- $(m, n) > (m - 1, \text{Ack}(m, n - 1))$,
- $(m, n) > (m, n - 1)$.

Lexicographic order on pairs works...
“A program terminates on all inputs if any infinite call sequence would give rise to an infinite descent in some (well-founded) data values.” [Lee, Jones, Ben-Amram]
The Size Change Principle

“A program terminates on all inputs if any infinite call sequence would give rise to an infinite descent in some (well-founded) data values.” [Lee, Jones, Ben-Amram]
Calling Context Graph for Ackermann

\[
\text{Ack}(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 \text{Ack}(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 \text{Ack}(m - 1, \text{Ack}(m, n - 1)) & \text{otherwise.}
\end{cases}
\]

Three calling contexts:

1. \{ (m, n), (m > 0 \land n = 0), (m - 1, 1) \}
2. \{ (m, n), (m > 0 \land n > 0), (m - 1, \text{Ack}(m, n - 1)) \}
3. \{ (m, n), (m > 0 \land n > 0), (m, n - 1) \}
(Very informally,)
“If every infinite walk on the CCG of a function results in the infinite descent of some well-founded measure, then the function terminates on all inputs.” [Manolios and Vroon]
Matrix Weighted Digraphs [Avelar, Muñoz, Rincón]

A framework built on CCGs to efficiently handle several measures.

- Each edge from a CCG is assigned an $N \times N$ matrix with entries in $\{-1, 0, 1\}$.
- Matrix multiplication is standard, but with a non-standard operations on elements.
- The weight of a walk on the graph is the product of the matrices on the edges.
- A matrix is called positive if it has a 1 entry on the main diagonal.
A framework built on CCGs to efficiently handle several measures.

- Each edge from a CCG is assigned an $N \times N$ matrix with entries in $\{-1, 0, 1\}$.
- Matrix multiplication is standard, but with a non-standard operations on elements.
- The weight of a walk on the graph is the product of the matrices on the edges.
- A matrix is called positive if it has a 1 entry on the main diagonal.
A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?
A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?
A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?
One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2}|G| + 1$ suffices.

Proof.
One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2}|G| + 1$ suffices.

Proof.
One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2} |G| + 1$ suffices.

Proof.
Idea:

- Let $S_i = \{L_v \mid v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- Start with empty lists for S_0.
- Calculate S_{i+1} from S_i.

The hard part.
A Process

Idea:

- Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- Start with empty lists for S_0.
- Calculate S_{i+1} from S_i.
A Process

Idea:

- Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- Start with empty lists for S_0.
- Calculate S_{i+1} from S_i.
A Process

Idea:

- Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- Start with empty lists for S_0.
- Calculate S_{i+1} from S_i. ← The hard part.
The Hard Part

Given a *cycle* at \(v \), instead of multiplying matrices only from the edges, for each vertex \(u \) on the cycle, include a matrix from \(L_u \).

Simulates following a circuit at \(u \).

\[
L_u = \{ M_2, M_4, M_5 \ldots \}
\]

\(M_1 \) \(M_2 \) \(M_3 \)
Given a cycle at \(v \), instead of multiplying matrices only from the edges, for each vertex \(u \) on the cycle, include a matrix from \(L_u \).
Simulates following a circuit at \(u \).
The Hard Part

Given a cycle at \(v \), instead of multiplying matrices only from the edges, for each vertex \(u \) on the cycle, include a matrix from \(L_u \). Simulates following a circuit at \(u \).

\[
L_u = \{ M_2, M_4, M_5 \ldots \}
\]
Given a *cycle* at v, instead of multiplying matrices only from the edges, for each vertex u on the cycle, include a matrix from L_u. Simulates following a circuit at u.

$$L_u = \{M_2, M_4, M_5 \ldots\}$$

Insert the result to L_v. Do this for every vertex, cycle at the vertex, and choice of matrices at vertices of the cycle.
An Optimization

The lists L_v can get long, making the calculation of S_{i+1} slow. We can do better.

- Matrices form a partial order under pointwise \leq.
- Multiplication respects the partial order.

Instead of keeping all matrices in L_v, keep only those minimal with respect to this partial order.
An Optimization

The lists L_ν can get long, making the calculation of S_{i+1} slow. We can do better.

- Matrices form a partial order under pointwise \leq.
- Multiplication respects the partial order.

Instead of keeping all matrices in L_ν, keep only those minimal with respect to this partial order.
The lists L_v can get long, making the calculation of S_{i+1} slow. We can do better.

- Matrices form a partial order under pointwise \leq.
- Multiplication respects the partial order.

Instead of keeping all matrices in L_v, keep only those minimal with respect to this partial order.
A few properties of the (optimized) process.

- If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- If ever $S_{i+1} = S_i$, then every further iteration will equal S_i. (Stabilization...)
- The process will always stabilize. (At worst $3^{N^2} |G| + 1$ iterations.)
Early Exits

A few properties of the (optimized) process.

- If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- If ever $S_{i+1} = S_i$, then every further iteration will equal S_i. (Stabilization...)
- The process will always stabilize. (At worst $3^{N^2}|V| + 1$ iterations.)
Early Exits

A few properties of the (optimized) process.

- If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- If ever $S_{i+1} = S_i$, then every further iteration will equal S_i. (Stabilization...)
- The process will always stabilize. (At worst $3^{N^2}|G| + 1$ iterations.)
Early Exits

A few properties of the (optimized) process.

- If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- If ever $S_{i+1} = S_i$, then every further iteration will equal S_i. (Stabilization...)
- The process will always stabilize. (At worst $3^{N^2} |G| + 1$ iterations.)
In practice, the process always stabilizes early.

Example

For $\text{Ack}(m, n)$, let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.
In practice, the process always stabilizes early.

Example
For $\text{Ack}(m, n)$, let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.
The guarantee is $3^5 + 1 = 244$ iterations.
In practice, the process always stabilizes early.

Example

For $\text{Ack}(m, n)$, let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.

The guarantee is $3^5 + 1 = 244$ iterations.

The process stabilizes after 2 iterations.
Thanks!