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Where I work

I “Formal Methods” refers to mathematically rigorous
techniques and tools for the specification, design and
verification of software and hardware systems.

I Formal methods provide a means to symbolically examine the
entire state space of a digital design (hardware or software)
and establish correctness or safety properties that are true for
all possible inputs.
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What I do

I PVS is a tightly coupled specification language and
interactive theorem-prover used extensively by the formal
methods group.
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Termination in PVS

Prove termination in two steps.

I Provide a function on the inputs into a well-founded order. (A
WFO is a set S and a relation < with no infinite decreasing
chain.)

I Show that every recursive call “lowers” the value of the
function.
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An Example

For m, n ∈ N, let

Ack(m, n) =


n + 1 if m = 0

Ack(m − 1, 1) if m > 0 and n = 0

Ack(m − 1,Ack(m, n − 1)) otherwise.

Three calls, so need some measure where:

I (m, n) > (m − 1, 1),

I (m, n) > (m − 1,Ack(m, n − 1)),

I (m, n) > (m, n − 1).

Lexicographic order on pairs works...
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The Size Change Principle

“A program teminates on all inputs if any infinite call sequence
would give rise to an infinite descent in some (well-founded) data
values.” [Lee, Jones, Ben-Amram]

Ack(2, 1)

Ack(2, 0)

Ack(1,Ack(2, 0))

Ack(1, 1)

Ack(1, 0) Ack(0, 1) 2

Ack(0,Ack(1, 0)) 3

Ack(0,Ack(1, 2)) 5

Ack(1, 2)

Ack(0,Ack(1, 1)) 4

Ack(1, 1)

Ack(0,Ack(1, 0)) 3

Ack(1, 0) Ack(0, 1) 2
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Calling Context Graph for Ackermann

Ack(m, n) =


n + 1 if m = 0

Ack(m − 1, 1) if m > 0 and n = 0

Ack(m − 1,Ack(m, n − 1)) otherwise.

Three calling contexts:

1. {(m, n), (m > 0 ∧ n = 0), (m − 1, 1)}
2. {(m, n), (m > 0 ∧ n > 0), (m − 1,Ack(m, n − 1))}
3. {(m, n), (m > 0 ∧ n > 0), (m, n − 1)}

1

2 3
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Calling Context Graphs

(Very informally,)
“If every infinite walk on the CCG of a function results in the
infinite descent of some well-founded measure, then the function
terminates on all inputs.” [Manolios and Vroon]
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Matrix Weighted Digraphs [Avelar, Muñoz, Rincón]

A framework built on CCGs to efficiently handle several measures.

I Each edge from a CCG is assigned an N × N matrix with
entries in {−1, 0, 1}.

I Matrix multiplication is standard, but with a non-standard
operations on elements.

I The weight of a walk on the graph is the product of the
matrices on the edges.

I A matrix is called positive if it has a 1 entry on the main
diagonal.
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A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight,
then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be
arbitrarily long. How can this be checked?
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One Solution

Theorem
It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices
are N × N, checking circuits with length at most 3N

2 |G |+ 1
suffices.

Proof.
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A Process

Idea:

I Let Si = {Lv |v ∈ G}, where Lv contains all matrices that are
the weight of some circuit at v with length at most i .

I Start with empty lists for S0.

I Calculate Si+1 from Si .

← The hard part.
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The Hard Part

Given a cycle at v , instead of multiplying matrices only from the
edges, for each vertex u on the cycle, include a matrix from Lu.
Simulates following a circuit at u.

v u

. . .

Lu = {M2,M4,M5 . . .}

M1

M3

Append the result to Lv . Do this for every vertex, cycle at the
vertex, and choice of matrices at vertices of the cycle.
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An Optimization

The lists Lv can get long, making the calculation of Si+1 slow. We
can do better.

I Matrices form a partial order under pointwise ≤ .
I Multiplication respects the partial order.

Instead of keeping all matrices in Lv , keep only those minimal with
respect to this partial order.
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Early Exits

A few properties of the (optimized) process.

I If the process ever results in a non-positive matrix, it can quit.
(Failed to prove termination...)

I If ever Si+1 = Si , then every further iteration will equal Si .
(Stabilization...)

I The process will always stabilize. (At worst 3N
2 |G |+ 1

iterations.)
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Terminal Remarks

In practice, the process always stabilizes early.

Example

For Ack(m, n), let µ1(m, n) = m and µ2(m, n) = n.

The guarantee is 35 + 1 = 244 iterations.

The process stabilizes after 2 iterations.
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Thanks!
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