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Outline

• Brief overview

• Reference field specification
- External (free space) vs. internal (shielded tissue) environments

• General beam selection strategy

• Discussion and summary

Note: Most of the content described in this presentation can be found in:

Slaba, T.C., Blattnig, S.R., Norbury, J.W., Rusek, A., La Tessa, C., Walker, S.A., GCR Simulator Reference Field 

and a Spectral Approach for Laboratory Simulation. NASA Technical Paper 2015-218698 (2015).

Full reference list and citations for models used can also be found in the document (not included here)
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Overview

• Long term exposure to GCR presents a serious health risk to astronauts
- Large uncertainties connected to the biological response

- Main goal of the NASA/HRP radiobiology experimental research program is to mitigate the risk 

through uncertainty reduction and countermeasure development 

• Radiobiology experiments are performed to reduce uncertainties and understand 

basic mechanisms for carcinogenesis, CNS and cardiovascular effects
- Most experiments have been performed with individual ion species and/or energies

- Approach is guided in part by desire to understand basic mechanisms

- Heavily influenced by facility constraints and cost

• GCR environment is a broad spectrum of particles and energies
- Difficult to provide in a laboratory

• NSRL has matured to a point where simulating a “broad” spectrum of particles and 

energies in a single experiment is feasible from a facility and cost perspective
- Still can’t simulate full GCR spectrum in one experiment but can do better than a single particle and 

energy (e.g. 56Fe at 1 GeV/n)
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Overview

• The “GCR simulator” is not intended to take the place of single beam studies
- Single beam studies are needed to examine and improve understanding of basic mechanisms 

- Also needed to test, develop, and validate theoretical and computational models

- Developing use-cases for GCR simulator through ongoing community discussions

• The GCR simulator should be viewed as a new and enabling technology that 

enhances current capabilities
- Provides opportunity to test models derived from single beam studies in more realistic scenario

- Improves operational efficiency of NSRL, which in turn, improves efficiency for single beam studies

• The notion of a GCR simulator is not new
- It has been discussed for decades, and was always a goal of the space radiobiology program

- The accelerator facility has now matured to a point where implementation is realistic
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Overview

• The GCR simulator is intended to deliver deep space, shielded tissue environment 

to biological targets in a laboratory setting
- Used to study a range of space radiobiology questions

- Provides a more realistic scenario for countermeasure development and testing

• Many of the details associated with GCR simulator design will depend on biological 

question and endpoints being studied

• Some aspects may be “standardized” across experiments
- Saves time and cost

- Enables subsequent cross comparisons and validation

- “Standard” conditions do not have to be universally applied if investigators have a good scientific 

rationale for deviation

• Two aspects allow for some standardization
- Reference field specification: which environment are we simulating?

- General beam selection strategy: how can we pick beams to do the simulation?
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External and Internal Fields

• The external field is modified as it passes through shielding and tissue

- Slowing down due to atomic processes

- Attenuation and breakup of heavy ions due to nuclear collisions

- Secondary particle production

Selected particle spectra in free space (left pane) and behind 5 g/cm2 of aluminum and 30 g/cm2 of water (right pane) during solar minimum



7

External and Internal Fields

• An important question is whether to design the simulator using the free 

space, external field or local tissue field

External

field

Local 

tissue field
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External and Internal Fields

• External field approach

Aluminum 

shield

Biological target

Beam

Beams selected to 

represent external, 

free space field 

before shielding

• Local tissue field approach

Biological target

Beam
Beams selected to 

directly represent 

shielded tissue field

External

field

Local 

tissue 

field
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External and Internal Fields

• Facility constraints have a significant impact on simulator design

- Current NSRL limits: protons (2.5 GeV) and heavier ions (1.0 GeV/n)

- Upgrade: protons (4.0 GeV) and heavier ions (1.5 GeV/n)

Energy cutoff description Free space approach
Local field 

approach

Current NSRL energy constraints 47% 88%

Upgrade NSRL energy constraints 63% 91%

Fraction of effective dose delivered by energies within NSRL energy constraints

- Results for female phantom behind 20 g/cm2 of aluminum shielding during solar minimum

- Other scenarios and exposure quantities lead to qualitatively similar results
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External and Internal Fields

• Results indicate that energy constraints at NSRL limit the feasibility of 

simulating the external, free space GCR field

- Missing ~half of the exposure

• Preliminary GCR simulator design will focus on reproducing the shielded 

tissue field

Local tissue field approach

Biological target

Beam
Beams selected to 

directly represent 

shielded tissue field
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Reference Field Specification

• Shielded  tissue field in space depends on many factors 

- Tissue location within body

- Shielding material, thickness, and geometry

- Solar activity

• Looked at variation associated with each of these factors

- A single reference field for deep space can be defined

• Observed variation is likely within 

- GCR environmental model uncertainty (at least 20%)

- Combined physics and transport modelling uncertainty

- Experimental design uncertainty: representing broad GCR spectrum with relatively few 

mono-energetic beams
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Reference Field Specification

• Variation in local tissue field was examined as a function of 
- Tissue location, shielding configuration, shielding material, solar activity

• Realistic vehicle shielding and simplified spherical shielding was considered
- Habitat demonstration unit (HDU) adapted for 1-year free space mission

- Cislunar vehicle concept

- ISS location in US Lab near overhead racks

- STS location in mid-deck (often referred to as DLOC 2)
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Reference Field Specification

• Tissue exposure values vary by less than 20% behind a range of shielding 

configurations
- Variation is within even the GCR environmental model uncertainty (~+20%)

- Increased variation in dose equivalent associated with HZE breakup

- Blood forming organ (BFO), bladder, and breast appear as representative tissues

- 20 g/cm2 aluminum appears as representative shielding

Tissue dose variation behind shielding Tissue dose equivalent variation behind shielding
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Reference Field Specification

• LET spectra show little variation across tissue locations and shielding 

configurations
- Spectra appear as qualitatively similar

- Variation below 200 keV/µm is likely within experimental design uncertainty

- Variation above 200 keV/µm makes negligible contributions to exposure

Female BFO LET spectra behind shielding Tissue LET spectra behind shielding
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Reference Field Specification

• Main difference in LET spectra between solar extremes is overall magnitude
- Multiplied solar maximum results by 1.85

- Constant factor nearly corrects discrepancies across the entire LET domain

- Solar activity does not qualitatively change the shape of the LET spectrum

LET spectra in female BFO behind 5 g/cm2 (left), 20 g/cm2 (middle), and 40 g/cm2 (right) aluminum shielding
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• Reference field specification 

for GCR simulator

- Female BFO behind 20 g/cm2

spherical aluminum shielding 

during solar minimum conditions

Avg. hits 

per cell 

nucleus

Dose 

(mGy)

Dose Eq. 

(mSv)
<Q>

hydrogen 126 86.0 131.1 1.5

helium 7 22.5 93.8 4.2

HZE 0.5 8.9 73.3 8.2

Reference Field Specification

Annual reference field quantities

<Q> is notation for average quality factor
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General Beam Selection Strategy

• General beam selection strategy is tied to reference field fluence

- Hydrogen and helium represented in energy domain

- Heavy ions represented in LET domain

- Beam intensities computed by integrating reference field fluence over bin limits

- Heavy ion beams chosen from lookup tables to match LET values
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• Hydrogen and helium components explicitly represented in energy 

domain

- Greater emphasis given to hydrogen and helium because they account for 81% of dose 

and 67% of dose equivalent

- Combination of degrader system and energy switching implemented

General Beam Selection Strategy
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• Heavy ion (Z > 2) contributions represented in the LET domain 

- Do not want rapid variation (Bragg peaks) occurring within animals

- Require heavy ions to be energetic enough to pass through animal model

- Use LET look-up tables to select ions for each bin

General Beam Selection Strategy
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• Lower energy portion of hydrogen and helium spectra is being represented by 

using polyethylene degrader system
- Similar procedure as previously implemented for SPE simulator

- Need to determine number of low energy bins required to achieve reasonably smooth internal 

exposure profiles

Low 

energy

General Beam Selection Strategy

Ellipsoidal tissue phantom to represent mouse

Dimensions: 7 cm (major axis), 3 cm (minor axis)

Mass: 33 grams

Reference field hydrogen and helium 

energy spectra 
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Dose profiles within phantom exposed to <150 MeV protons

General Beam Selection Strategy

• Internal variation appears to be controlled with as few as 10 energy bins for low 

energy portion of hydrogen spectrum
- Bragg peaks obvious if 3 or 5 bins are used

- Similar results found for alpha beams used to represent helium component

- Using more than 25 bins starts to reach fidelity of degrader system at NSRL
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Example Beam Selection

• Remaining analyses will consider the following case

- 10 low energy bins for protons and alphas

- 5 high energy bins for protons and alphas

- 15 LET bins for HZE component
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• Beam induced spectral quantities are in good qualitative agreement with 

reference field
- Reasonable agreement across full range of LET values

- (Z*/)2 spectrum provides a somewhat independent check since beam selection was not guided by 

this quantity

Example Beam Selection

Comparison of reference field spectra to beam induced quantities at center of phantom (isotropic irradiation)
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Avg. hits 

per cell 

nucleus

Dose 

(mGy)

Dose Eq. 

(mSv)
<Q>

hydrogen 105.0 71.2 95.5 1.3

helium 4.5 16.3 49.7 3.0

HZE 0.3 8.3 67.0 8.1

Avg. hits 

per cell 

nucleus

Dose 

(mGy)

Dose Eq. 

(mSv)
<Q>

hydrogen 126.0 86.0 131.1 1.5

helium 7.0 22.5 93.8 4.2

HZE 0.5 8.9 73.3 8.2

Example Beam Selection

- Cell nucleus hits computed by assuming cross sectional area of 100 µm2

- Hits/cell results consistent with previous calculations by Curtis et al.

Reference field integrated quantities

Beam induced integrated quantities at center of phantom
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Summary

• Facility constraints limit the ability to simulate the external, free space field directly

- Proposed simulator design instead focuses on reproducing the local tissue field

• Variation in the induced tissue field was examined

- A single reference environment for deep space is reasonable at this time

• An approach for beam selection in the simulator was presented

- The approach is tied directly to the reference environment flux

- Allows systematic improvements to be made 

- Spectral quantities and integrated quantities are reasonably well represented

- Optimization procedures could be developed to improve overall agreement

• Drawbacks of the proposed strategy include 

- Neutron and π/EM components

- Lower energy constraints for HZE particles associated with animal models

- These drawbacks could be addressed by augmenting the existing design if necessary
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Backup: Example Beam Info

• Proton beam information for example study

A Z
Energy 

(MeV/n)

LET

(kev/µm)
(Z*/)2 Intensity

(#/cm2-year)

Dose 

(mGy/year)

1 1 7.4 6.4 63.8 1.6 x 105 1.48

1 1 10.2 5.0 46.7 2.5 x 105 1.83

1 1 14.0 3.8 34.3 4.0 x 105 2.25

1 1 19.2 3.0 25.2 6.3 x 105 2.73

1 1 26.4 2.3 18.6 9.8 x 105 3.30

1 1 36.2 1.8 13.7 1.5 x 106 3.91

1 1 49.6 1.4 10.2 2.2 x 106 4.52

1 1 68.0 1.1 7.7 3.2 x 106 5.02

1 1 93.3 0.8 5.8 4.3 x 106 5.30

1 1 128.1 0.7 4.4 5.4 x 106 5.31

1 1 205.0 0.5 3.1 1.4 x 107 9.62

1 1 383.2 0.3 2.0 1.7 x 107 8.53

1 1 716.0 0.26 1.5 2.1 x 107 7.99

1 1 1337.9 0.23 1.2 2.1 x 107 6.04

1 1 2500.0 0.22 1.1 1.6 x 107 5.35
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Backup: Example Beam Info

• Alpha beam information for example study

A Z
Energy 

(MeV/n)

LET

(kev/µm)
(Z*/)2 Intensity

(#/cm2-year)

Dose 

(mGy/year)

4 2 7.4 25.6 255.3 1.4 x 104 0.53

4 2 10.2 19.8 186.9 2.1 x 104 0.61

4 2 14.0 15.4 137.0 3.2 x 104 0.72

4 2 19.2 11.9 100.7 4.9 x 104 0.86

4 2 26.4 9.2 74.2 7.4 x 104 0.99

4 2 36.2 7.1 54.9 1.1 x 105 1.12

4 2 49.6 5.5 40.9 1.5 x 105 1.20

4 2 68.0 4.3 30.6 2.0 x 105 1.23

4 2 93.3 3.4 23.2 2.5 x 105 1.21

4 2 128.1 2.7 17.7 2.9 x 105 1.14

4 2 185.2 2.1 13.2 4.7 x 105 1.43

4 2 282.3 1.6 9.8 6.0 x 105 1.41

4 2 430.3 1.3 7.5 7.5 x 105 1.41

4 2 656.0 1.1 6.1 8.4 x 105 1.33

4 2 1000.0 1.0 5.2 8.2 x 105 1.16
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Backup: Example Beam Info

• HZE beam information for example study

A Z
Energy 

(MeV/n)

LET

(kev/µm)
(Z*/)2 Intensity

(#/cm2-year)

Dose 

(mGy/year)

7 3 736 2.4 13.1 2.5 x 104 0.09

7 3 331 3.3 19.8 1.9 x 104 0.09

7 3 189 4.6 29.3 1.1 x 104 0.08

11 5 788 6.4 35.5 4.4 x 104 0.41

12 6 887 9.0 48.9 7.9 x 104 1.03

12 6 365 12.6 74.7 6.4 x 104 1.18

16 8 644 17.5 98.7 4.3 x 104 1.11

16 8 306 24.5 148.3 2.3 x 104 0.84

23 11 590 34.2 194.2 1.7 x 104 0.85

28 14 988 47.8 256.9 1.1 x 104 0.76

32 16 755 66.7 369.4 5.7 x 103 0.55

39 19 781 93.2 514.0 3.6 x 103 0.48

47 22 682 130.2 728.1 3.0 x 103 0.56

56 26 682 181.8 1016.8 2.8 x 103 0.74


