Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Presented by:

James Stephenson
U.S. Army Aviation and Missile Research, Development, and Engineering Center

Eric Greenwood
NASA Langley Aeroacoustics Branch
Motivation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
- Motivation
- Analysis Technique

Experiment Description
- Vehicle Characteristics
- Flight Conditions

Results
- BVI Extraction vs BVISPL
- Average BVI
- BVI Standard Deviation

Conclusions

High-Speed Impulsive

Thickness

Tail Rotor

Blade Vortex Interaction

Loading
Aerodynamics Affecting BVI Noise

– Inflow
– Blade Loading
– Advance Ratio

Flight Test Uncertainties

– Inconsistent Vehicle Flight Path
– Inconsistent Vehicle Velocity
– Atmospheric Effects (Wind, Temperature, Etc.)
– Blade-Blade Variations
– Variable Weight (Fuel burn)

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
 Motivation
 Analysis Technique

Experiment Description
 Vehicle Characteristics
 Flight Conditions

Results
 BVI Extraction vs BVISPL
 Average BVI
 BVI Standard Deviation

Conclusions
Wavelet Transform

\[\tilde{p}(l, t) = \frac{1}{\sqrt{l}} \int_{-\infty}^{\infty} p(t') \psi_w^*(\frac{t' - t}{l}) dt' \]

Morlet Wavelet

\[\hat{\psi}_M(l \omega, \omega_\psi) = \sqrt{\frac{2\pi l}{N}} \pi^{-\frac{1}{4}} H(\omega) e^{-(l \omega - \omega_\psi)^2 / 2} \]

Wavelet Energy

\[E(f, t) = \frac{1}{C_\psi} \frac{|\tilde{p}(f, t)|^2}{l^2} \]

Inverse Wavelet Transform

\[p(t') = \frac{1}{C_\psi} \int_{-\infty}^{\infty} \int_{l}^{\infty} \tilde{p}(l', t) \psi_w(\frac{t' - t}{l'}) \frac{dl'}{l'2} \text{dt} \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

BVI Filter

\[
\tilde{p}(f_j, t_i) = \begin{cases}
\tilde{p}(f_j, t_i) & \text{if } f_j > f_{cut} \text{ and } E(f_j, t_i) > E(f_{MR}, t_i) - A_{cut} \\
0 & \text{otherwise}
\end{cases}
\]

Analysis Technique

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
 Motivation
 Analysis Technique

Experiment Description
 Vehicle Characteristics
 Flight Conditions

Results
 BVI Extraction vs BVISPL
 Average BVI
 BVI Standard Deviation

Conclusions
• (28) Wireless Acoustic Microphone Systems
 ½” B&K 4189 – 25 kHz sampling
 15” Diameter ground board
 GPS Receiver

• Weather Systems
 – Tethered Weather Balloon
 • Weather Sonde (200’)
 • (up to 4) Temperature, Humidity, Pressure Sensors (~50’)
 – ZephIR 300 LIDAR System
 • Wind velocity at 12 altitudes up to 1000’
 – (5) Ground Weather Stations
 • Located near Mics 1,11,21,24,27
Vehicle Characteristics

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
- Motivation
- Analysis Technique

Experiment Description
- Vehicle Characteristics
- Flight Conditions

Results
- BVI Extraction vs BVISPL
- Average BVI
- BVI Standard Deviation

Conclusions

- Aircraft Navigation and Tracking System (ANTS) (20 Hz sampling)
 - GPS Receiver
 - Inertial Navigation Data

- Air-Data Boom (5 Hz)
 - Outside Air Temperature
 - Static and Dynamic Pressures
 - Wind Velocities

<table>
<thead>
<tr>
<th></th>
<th>MR</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Blades</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Radius (R)</td>
<td>10.69</td>
<td>1.86 [m]</td>
</tr>
<tr>
<td>Blade Pass Frequency (f)</td>
<td>19.5</td>
<td>104 [Hz]</td>
</tr>
</tbody>
</table>
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

6° Descent Condition

<table>
<thead>
<tr>
<th></th>
<th>KIAS</th>
<th>KTAS</th>
<th>Nom.</th>
<th>Takeoff Wgt</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 KIAS</td>
<td>80</td>
<td>87 (Typ)</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>80 KTAS</td>
<td>73 (Typ)</td>
<td>80</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
- Motivation
- Analysis Technique

Experiment Description
- Vehicle Characteristics
- Flight Conditions

Results
- BVI Extraction vs BVISPL
- Average BVI
- BVI Standard Deviation

Conclusions

\[f_{cut} = 11 f_{MR} \]

\[A_{cut} = -6 \text{ [dB]} \]
Results

Guides to阅读文本

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

\[f_{cut} = 11 \ f_{MR} \quad A_{cut} = -6 \ [\text{dB}] \]
Results

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

\[f_{cut} = 11 \, f_{MR} \quad \text{and} \quad A_{cut} = -6 \, [\text{dB}] \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

\[f_{cut} = 11 \ f_{MR} \quad A_{cut} = -6 \ [\text{dB}] \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

\[f_{cut} = 11 \, f_{MR} \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

\[\Delta W_{\text{nom}} = 11\% \rightarrow -1.5 \text{ Pa} \approx 1.0 \text{ dB} \]
\[\Delta W_{\text{max}} = 17\% \rightarrow -2.4 \text{ Pa} \approx 1.3 \text{ dB} \]

\[\alpha_{\text{TPP}} = - \frac{D}{W} - \gamma? \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions

Average BVI

80 KTAS (~73 KIAS)

Peak to Peak [Pa]

4400 lb
(12 Runs)

\[\Delta W_{nom} = 11\% \rightarrow -1.5 \text{ Pa} \approx 1.0 \text{ dB} \]

\[\Delta W_{max} = 17\% \rightarrow -2.4 \text{ Pa} \approx 1.3 \text{ dB} \]

\[\alpha_{TPP} = -\frac{D}{W} - \gamma \]
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
- Motivation
- Analysis Technique

Experiment Description
- Vehicle Characteristics
- Flight Conditions

Results
- BVI Extraction vs BVISPL
- Average BVI
- BVI Standard Deviation

Conclusions
• BVI noise can be **strongly** affected by weight
 – Vortex Strength + Tip-Path Plane?

• BVI noise highly variable
 – Up to 50% of normalized standard deviation
 – Can be used to identify secondary BVI events
Acknowledgements

- Mike Watts
- David Conner
- Keith Scudder
- Andrew McCrae
- Nikolas Zawodny
- Aris Helicopters
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
- Motivation
- Analysis Technique

Experiment Description
- Vehicle Characteristics
- Flight Conditions

Results
- BVI Extraction vs BVISPL
- Average BVI
- BVI Standard Deviation

Conclusions
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background
Motivation
Analysis Technique

Experiment Description
Vehicle Characteristics
Flight Conditions

Results
BVI Extraction vs BVISPL
Average BVI
BVI Standard Deviation

Conclusions