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Composite “Flat” Bottom Hole 
Specimen

Approximate Depths of Flat Bottom Holes 0.05, 0.1, 0.15 cm
Approximate Diameters 1.27, 0.63, 0.32 cm



Thermal Response at 0.25 
seconds

Profile across center of flat bottom holes



Thermographic Sizing of Flaws

• Size of small flaws complicated by in-plane 
thermal diffusion

• Two common approaches have been taken
– Point by point time analysis – flaw sizing from earliest 

flaw response (limited in-plane diffusion)
– Image analysis- deconvolution or other image 

processing technique to remove diffusion effects

• Alternate approach is simultaneously incorporate 
time and spatial information into analysis
– Simultaneous application of variational method for 

multiple time responses



Variational Principle in Image 
Processing

• Applications:
– De-noising
– Segmentation
– Deblurring
– Estimation of apparent motion
– Registration

• Minimize energy ⇒ 𝐸 𝑢 =  Ω 𝐹 𝑢, 𝐼 𝑑𝑥 𝑑𝑦 + 𝛾 G(u)
– u – desired image
– I – acquired image
– E(u) – Energy
– F(u,I) – relationship between desired image and acquired image
– G(u)- constraint
– g - constant 
– Ω - domain



Variational Principle in Image 
Segmentation

Chan, T. F. and Vese, L. A., “Active contours without edges," IEEE Transactions on 

Image Processing 10, 266-277 (2001)



Variational Principle for Sizing 
Thermographic Flaws Using Single Image

• Minimize energy ⇒ 𝐸 𝑢 =

 Ω (𝐷 𝑢(𝑥, 𝑦), 𝑥, 𝑦, 𝑡 − 𝑇 𝑥, 𝑦, 𝑡 )2𝑑𝑥 𝑑𝑦 + 𝛾  Ω |𝛻𝑢| 𝑑𝑥 𝑑𝑦

– 𝐷 𝑥, 𝑦, 𝑡 – flaw response for flaw with shape u

– u(x,y) – binary representation of hole ( 0 not hole, 1 hole)

– 𝑇 𝑥, 𝑦, 𝑡 – measured response

– E(u) – Energy

–  Ω |𝛻𝑢| 𝑑𝑥 𝑑𝑦– circumference of flaw

• Need fast method for estimating 
– 𝐷 𝑢(𝑥, 𝑦), 𝑥, 𝑦, 𝑡



Approximate Solution for Flat 
Bottom Hole of the Form

D(u,x,y,t) – Thermal response of flat bottom hole

d – depth of top of flat bottom hole

S – surface of top of flat bottom hole

k- thermal diffusivity of material

K-thermal conductivity

F-flux at surface

b-constant

Note: Blurring of the delamination is function of the time of measurement, not the 
depth of the top of the flat bottom hole



Thermal Response Slot 0.1 cm 
Below Surface at 0.5 Seconds

xx

ACS – Approximate Convolution Solution with b=2.1*in-plane diffusivity
FEM – Finite Element Simulations
Both size and shape in good agreement



Amplitude of Thermal Response for 
Different Hole Sizes and Depths

xx

Time dependence of amplitude in good agreement with approximate solution

0.05 cm below
surface

0.1 cm below
surface

0.15 cm below
surface



Single Time Slice Analysis

• Euler-Lagrange Equation of single time response

– G- Gaussian convolution
– H – Approximate Hat Function
– d – Approximate delta function 
– T(x,y,t) – measured flaw response

– Solving for 
𝑑(𝜙 𝑥,𝑦 )

𝑑𝑡
=0

Details in paper

𝛿(𝜙 𝑥, 𝑦 )(𝐺 ∗ (𝐺 ∗ 𝐻(𝜙 𝑥, 𝑦 )-T(x,y,t) + 𝛾 𝑑𝑖𝑣(
𝛻𝜙 𝑥,𝑦

|𝛻𝜙 𝑥,𝑦 |
)=
𝑑(𝜙 𝑥,𝑦 )

𝑑𝑡



Relationship of 𝜙 𝑥, 𝑦 to 
Thermal Response

𝜙 𝑥, 𝑦

𝐻(𝜙 𝑥, 𝑦 )

Shape of flat bottom hole

𝐺 ∗ 𝐻(𝜙 𝑥, 𝑦 )
Thermal response of flat bottom hole

Measured Thermal Response

Difference between 𝐺 ∗ 𝐻 𝜙 𝑥, 𝑦 and Measured Thermal Response 

Determines 
𝑑(𝜙 𝑥,𝑦 )

𝑑𝑡



Results for 0.635cm Diameter 
Flat Bottom Hole at 1 sec

Estimated 
Image of Top of 
Flat Bottom 
Hole (estimated 
diameter  0.64)

Measured 
Response

Estimated 
Response

Difference



From Single 𝜙 𝑥, 𝑦 to Thermal 
Response at Multiple Times

𝜙 𝑥, 𝑦

𝐻(𝜙 𝑥, 𝑦 )

Shape of flat bottom hole

Thermal
response
at 0.5 sec

Thermal
response
at 0.7 sec

Thermal
response
at 0.9 sec



Time Series Analysis

• Euler-Lagrange Equation of a series of time 
response

– T(x,y,tn) – measured flaw response at tn

– Solving for 
𝑑(𝜙 𝑥,𝑦 )

𝑑𝑡
=0

Details in paper

𝛿(𝜙 𝑥, 𝑦 )  𝑛 (𝐺 ∗ (𝐺 ∗ 𝐻(𝜙 𝑥, 𝑦 )−T(x,y,𝑡𝑛) + 𝛾 𝑑𝑖𝑣(
𝛻𝜙 𝑥,𝑦

|𝛻𝜙 𝑥,𝑦 |
)=
𝑑(𝜙 𝑥,𝑦 )

𝑑𝑡



Time Response of Amplitude of 
Thermal Response

Estimated depth based on 
time response - 0.154 cm

Estimated depth based on 
time response - 0.099 cm

Estimated 
depth 
based on 
time 
response -
0.055 cm



Results on All Holes

Depth(cm)

Time Series 
Image Analysis 
Depth Estimate

(cm)

Diameter(cm)

Average Single 
Image Analysis 

Diameter
(cm)

Time Series 
Image Analysis 

Diameter
(cm)

0.03 0.04 1.27 1.19 1.22

0.10 0.09 1.27 1.23 1.22

0.15 0.14 1.27 1.23 1.19

0.05 0.05 0.63 0.62 0.62

0.10 0.10 0.63 0.63 0.63

0.15 0.15 0.63 0.65 0.64

0.05 0.05 0.32 0.34 0.30

0.10 0.10 0.32 0.36 0.30

0.15 0.14 0.32 0.56 0.16



Discussion

• Most significant improvement is on smallest holes
• Estimation of flaw size depth incorporates flaw size 

information and give good agreement with known 
depths for all flaws
– Earliest significant responses give best estimates for depth

• Constraint minimizing circumference of flaw tends to 
result in circular flaws
– Good for this case, however, not so good if flaws are not 

circular

• More work need for delaminations
– Single delaminations
– Overlapping delaminations



Summary

• Good approximate solution for thermal 
response of flat bottom holes is the 
convolution of the shape of the top of the flat 
bottom hole with a Gaussian 

• Variational method for determining the size 
and depth of flat bottom holes gives a more 
accurate value for the size and depth


