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Outline

• Uses of Thermographic Simulations

• Description of Flash Thermographic Measurement

• Thermal Simulation of Heat Diffusion in Unidirectional and Quasi-
isotropic composites

• Simulating delaminations in composites with quadrupole method



NASA Applications of Thermographic 
Simulations 

• Optimization of thermographic techniques

• Determination of limitation of experimental and analysis techniques

• Generation of set of eigenvector of principle component analysis of 
thermal response

• Inversion of thermal responses to information on flaw sizes and 
locations

• Training neural networks for rapid reduction of thermal data



Flash Thermography Measurements



Simulation of Composites

• Finite Difference
• Implicit and explicit 
• Initial flux at surface or initial temperature 
• “Finite Difference Methods in Heat Transfer”, M. N. Ozisik

• Finite Element
• Simpler for complex geometries
• Initial flux at surface or initial temperature 
• Commercial packages are available

• Thermal Quadrupoles (examined in this paper)
• Modification of method presented in “Thermal Quadrupoles, Solving the Heat 

Equation through Integral Transforms”, Maillet, Andre, Bastsale, Degiovanni and 
Moyne 



Thermal Response to an Impulse Flux Input at 
Single Point (d(x) d(y) d(z) d(t)) Unidirectional 
Composite ( ax = 10 ay) – 1/60 sec after pulse 

Single Ply 0.01 cm thick

Front and back surface temperature are approximately the same
Fiber direction evident in thermal response 

Front surface temperature Back surface temperature



Thermal Response to d(x) d(y) d(z) d(t) Quasi Isotropic 
Composite with Two Plies, Top ply ( ax = 10 ay), Second ply( 
10 ax = ay) – 1/60 sec after pulse 

Two Plies, both
0.01 cm thick

• Initial front surface temperature indicates upper ply fiber direction and back surface 
temperature has appearance of isotropic in-plane heat flow. 

• Back surface response is more indicative of flaw response

Front surface temperature Back surface temperature



Gaussian Fit of Temperature Profiles in 
Simulated Responses  as Function of Time

Front surface temperature profiles Back surface temperature profiles

Slope 4 ax

Slope 4 ax

Slope 4 aySlope 4 ay

Slope 2(ax +ay)

Slope 2(ax +ay)

For quasi-isotropic layup the in-plane diffusivity can be considered to be approximately isotropic



Composite “Flat” Bottom Hole Specimen

Approximate Depths of Flat Bottom Holes 0.05, 0.1, 0.15 cm
Approximate Diameters 1.27, 0.63, 0.32 cm
Quasi-isotropic ply layup 



Temperature Profiles in X and Y directions over Holes in 
Composite Specimen With FEM Simulation Assuming 
Isotropic In-plane Heat Conduction

0.32 cm diameter hole 0.05 cm below surface 0.64 cm diameter hole 0.1 cm below surface



Thermal Quadrupoles for Single Layer

• T0- Laplace transform of front 
surface temperature

• F0-Laplace transform of front 
surface flux

• T1- Laplace transform of back 
surface temperature

• F1-Laplace transform of back 
surface flux

• a – Thermal Diffusivity

• K - Thermal  Conductivity

• d – layer thickness

K, a

T0,F0

T1,F1

cosh(𝑞 𝑑) −
sinh 𝑞 𝑑

𝐾𝑞

−𝐾𝑞 sinh 𝑞 𝑑 cosh(𝑞 𝑑)

𝑇0
𝐹0

=
𝑇1
𝐹1

𝑞 = 𝑠/a

d

Two of T0,F0 ,T1,F1 are defined, inverse transform solved analytically



One Dimensional Thermal Quadrupoles for 
Two Layers

• T0- Laplace transform of front 
surface temperature

• F0-Laplace transform of front 
surface flux

• T2- Laplace transform of back 
surface temperature

• F2-Laplace transform of back 
surface flux

• a1,a2– Thermal Diffusivities

• K1, K2 - Thermal  Conductivities

• d1,d2 – layer thicknesses
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Two of T0,F0 ,T2,F2 are defined, inverse transform solved numerically

K2, a2d2



Laplace Transform Thermal Response in 
Plate

𝑇 𝑥, 𝑦, 𝑧, 𝑠 =  𝑛=0
∞  𝑚=0
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• ax, ay, az, Kz, diffusivities in x, y, z directions and thermal conductivity in z 
direction

• Tm,n and Fm,n Cosine Fourier coefficients for surface temperature and flux



Two Dimensional Thermal Quadrupoles for Two 
Layers with Zero Flux at Back Surface and No Spatial 
Variation in Front Surface Flux(F0)

• T0,T1a, T1b, T2- Laplace transform of 
temperature at front surface, above 
and below interface and back 
surface

• F0, F1, F2-Laplace transform of 
front surface interface and back 
surface flux

• a1,a2– Thermal Diffusivities

• K1, K2 - Thermal  Conductivities

• d1,d2 – layer thicknesses

• m- refers to Fourier cosine series 
coefficient 
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T0, T1a , T1b , T2 can be defined in terms of F0 and F1

K2, a2d2

T1a(x,s),

T1b(x,s), 

F1(x,s)



Solving for Temperature at Front Surface

• Instead of solving for Fourier cosine series coefficients, discretize the 
temperature and fluxes at surfaces and interface
𝑇0𝑏(𝑥𝑛), 𝑇1𝑎(𝑥𝑛), 𝑇1𝑏(𝑥𝑛) , 𝑇2(𝑥𝑛), and 𝐹1(𝑥𝑛)
• Represent the all temperatures and fluxes as vectors, then relate temperatures to 

fluxes with matrix equations

𝑇0 = 𝑀0 ∗ 𝐹1 + 𝐹0

coth(
𝑠
𝛼𝑧

𝑑1)

 𝑠 𝛼𝑧

• 𝑇1𝑏 = 𝑀1𝑎 ∗ 𝐹1 + 𝐹0

csch( 𝑠

𝛼𝑧
𝑑1)

 𝑠 𝛼𝑧

𝑇1𝑏 = 𝑀1𝑏 ∗ 𝐹1

𝐹1 = 𝑇𝑟𝑎𝑛𝑝𝑜𝑠𝑒([𝐹1(𝑥0), 𝐹1(𝑥2), … , 𝐹1(𝑥𝑛)])



Estimating the Flux at the Interface as Zero Flux over 
Delamination and 1 Dimensional Flux Value in Region with 
No Delamination

Temperature should 
be 
equal above and 
below interface where 
no delamination exists 

Comparison of FEM solution to approximate quadrupole
solution  



Setting Temperature Equal Below and 
Above Interface

𝑀1𝑎 ∗ 𝐹1 + 𝐹0

csch( 𝑠

𝛼𝑧
𝑑1)

 𝑠 𝛼𝑧

= 𝑀1𝑏 ∗ 𝐹1

Resulting in the matrix equation 

(𝑀1𝑎 −𝑀1𝑏) ∗ 𝐹1 = 𝐹0

csch( 𝑠

𝛼𝑧
𝑑1)

 𝑠 𝛼𝑧
Matrix equation solved numerical



Temperatures and Fluxes Calculated for 
Interfaces and Front Surface

Temperatures 
equal in no 
delamination 
region at 0.7 sec

Good 
agreement 
between FEM 
and  quadrupole
solution  

Quadrupole solution calculated in 0.3 sec, FEM solution 
in 30 sec



Summary

• Simulations assuming in-plane thermal conductivity is isotropic is a 
good approximation of quasi-isotropic composite layups

• Quadrupole method is a computationally efficient technique for 
simulating the thermal response of delaminations in composites 


