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Overview

Nondestructive Evaluation Sciences Branch

* Focus on composites

* Validation related challenges
* Experimental comparisons
* Avoiding application of the tool to cases that don’t fit prior validations

* Tool development challenges
 Memory efficiency
 Computational efficiency (speed)

* Hardware related challenges
* Hardware selection and keeping up with continuous progress



Composites for Space
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Composites for Aeronautics

* Advanced Composite Project (5 Year Project):

Nondestructive Evaluation Sciences Branch

* Reduce timeline for certification of composite structures — _
* Partnership: NASA, FAA, DoD, Industry, University * }‘.
* Rapid Inspection Technical Challenge: - |
Lockheed Martin F-35 Northrop Grumman
* Focus areas: Fire Scout
* Inspection of complex geometry components ISAAC Automated fiber

* Rapid large area inspection placement machine
 Damage/defect characterization
e Validation of detectability

* Damage types:
* Microcracking, fiber waviness, delamination, porosity

e Simulation:

* Enables model based inspection prediction/validation and
cost effective method optimization

e Custom code, 3D ultrasound simulation under
development
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omposite Damage/Defect Types
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X-ray CT of PRSEUS Joint

Fiber waviness (in-plane), From NASA TM-2013-217799 by Patrick Johnston
From Kugler and Moon 2002 '
doi: 10.1177/0021998302036012575
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Simulation Tool Validation Challenges

Nondestructive Evaluation Sciences Branch

* Direct comparisons between simulation and experiment can be
challenging

* Requires specific experimental design

* Experimental case will always have some differences from the simulated
case

e Getting representative samples for experiment can be a challenge
 Creating representative defects/damage
e Differences between ‘idealized’” material properties and as-manufactured

* Must perform re-validation against appropriate cases when the simulation
tool is used for a new purpose

* Understanding of the physics is required to know when this is necessary



Example: Ultrasound simulation

Nondestructive Evaluation Sciences Branch

* Elastodynamic finite integration technique ultrasonic simulation code
e Custom C++ and MPI
* Similar to finite difference
* Adaptable, efficient, all details under our control




Simulation Validation Approach 1

* Laser Doppler vibrometry experiment comparisons
e Group velocity comparisons unidirectional IM7/8552 8-ply sample:

» Track envelope peak propagation (using Hilbert transform)

a) LV wavefield data

0
Lenath (m)

Approximate time=56 microseconds after initial

b) EFIT result

Mode 1 group velocity comparisons:

Method Mode 1, 0° | Mode 1, 90° | % Difference |% Diff from
vy(1m/s) v, (m/s) |from EFIT, 0°| EFIT, 90°
EFIT 1956 +/— 90|1335 +/— 44 -
Dispersion curves 1911 1254 2.33 6.26
Experiment 2254 +/— 84|1464 +/— 69 14.16 9.22
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Experimental LV wavefield data
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Simulation Validation Approach 2
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 Compare wave behavior in all directions

* Wavenumber comparison technique:

 Start with data for all grid points on surface of sample, amplitude at x-position vs. y-position
vs. time

* Take 3D FFT to yield x-wavenumber vs. y-wavenumber vs. frequency (where k=f/c, ...)
* Select frequency slice that corresponds to the excitation frequency
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Unidirectional Case

Nondestructive Evaluation Sciences Branch

* AO mode results (SO mode is very low amplitude)

* Amplitude variation around k,-k, oval is due to excitation source filtering (changes with couplant, transducer, etc and
can be included in EFIT as well)

¢ Interested in directional wave behavior observed via wavenumber values

Wavenumber plots Unidirectional laminate: Mode 1 wavenumber comparisons
_ Experiment __ Simulation | P P

| Method 0% k(1/m)|90° k(1/m)| % Difference % Diff from

- m | from EFIT, 0°) EFIT, 90°
T | T | EFTT 143.3 | 2634
= | =

m \ 7 Dispersion curves| 139.7 258.1 2.54 2.03

= | Experiment 129.5 229.1 10.12 13.93
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Cross-ply case

Nondestructive Evaluation Sciences Branch
* Demonstrates ability to build up laminates ply-by-ply in EFIT

 However - is orthotropic only!

[0/90].,¢
Experiment Simulation
400 e 400 —s e
0 L w j [0/90/0/90], Layup
0 — ' o — Method 0° k(1/m)|90° k(1/m)| % Difference |% Diff from
100 - 100
T o ( T _ from EFIT, 0°| EFIT, 90°
z . z
100 % ‘ < EFIT 159.8 169.2 - -
-200 - =200
. = Dispersion curves| 161.4 180.7 1.00 6.57
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Orthotropic vs. Non-orthotropic
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Quasi-iIsotropic case
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Differences from Experiment

Nondestructive Evaluation Sciences Branch

0,/90,]. laminate:
* Overall simulation yields results close to experiment

and predicted dispersion curves

* Expected some differences from experiment due to as-
fabricated material properties of laminate versus “ideal”
properties used in model

* Thickness variation, fiber warping, variation in fiber density,
slightly off-angle ply layers (laid up by hand)

Unidirectional laminate:




Nondestructive Evaluation Sciences Branch

Once we have a working simulation tool — let’s use it!

* Develop optimized and new damage quantification methods
* Predict inspectability
* Validate SHM

* Still have validation challenges ahead

* You developed a promising new inspection methodology, now go
back and validate against experiment



Guided Wave Energy Trapping
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e Studied previously by several authors via LDV and simple simulations
* These prior studies focused on single layer delamination
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Energy Trapping

Nondestructive Evaluation Sciences Branch

* Potential for rough sizing of damage via rapid data processing

Mass normalized

LDV data: s ? | cumulative energy Cm
500 kHz N"?“j-_ e ot e g " . 5
!“?‘;-’-‘;%\t’ 4 .- ¢ i - Ei (x, y, Z, t) — f Evizdt
ﬁ"-*:_ 5 ty
LDV data: _ ' | E
200 kHz ' H

N

* Can energy trapping be leveraged for multi-ply delam characterization
with only single sided access?



Hidden Delamination Study

 Specifically: can energy reduction be used to
provide information about the presence of
hidden delamination damage?

Nondestructive Evaluation Sciences Branch
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Simulation Study: Cumulative Energy
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Pristine
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Energy trends

Nondestructive Evaluation Sciences Branch

* Quantitative comparisons, energy above top delamination

Note: nonzero for pristine
because energy still passes
into that region (especially
with edge scattering, etc)

vy, Sum of Normalized Cumulative Energy Above Uppermost Delamination
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Validation

* LDV scans of composites with Teflon inserts

* Matching simulated cases (ranging from
single delam to 3)

* Contact transducer for excitation

* Planis to measure cumulative energy

trapping

I ~bove ply B
Above ply &
I 4 bove ply 3

Length (mm) Length (mm)




Inclusion with Teflon Case

* Unexpected defects/variability due to manufacturing
* Immersion UT 10 MHz, 0.01” resolution

1 Delamination Case

Length (mm)

5 10 15 20 25
Length {(mm) Length (mm)

Resin rich
regions?
Wrinkles?



Repeatability
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* For amplitude based studies, repeatability can be an issue
 Differences between repeated data scan sets

* Couplant changes!

* Also, planning to use laser excitation

Transducer face: Scan 1 Transducer face: Scan 2 Transducer face: Scan 3

0.8 20+

i 0.6

Length {rmmm)
Length {rmm)

i 0.4

0.2 sk

30 5 0 5 10 15 20 25 30
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Code optimization
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 Single vs double precision? Comparison of Platforms
* Porting code often requires some Optimized Code
amount of re-writes 120 |

* Must check that ported code
yields same results as validated
code!
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 Example shown here:
* ~“10x improvement in

Billions of Operations per second
(o]
(@)

A
/ |
Original Code
\
/ \ I I
- W

. . 40
efficiency
* 0.6% cost 20
* But — scalability also matters 0
HPC1, 70 K2, 160 i7-IPP, 10  i7-Intrinsic, 10 3120A,166 7120P, 166  7120P, 243
~$150K ~$800K ~§2K ~§2K ~$3K ~$5K ~$5K
8 nodes 32 nodes 1 node 1 node 1 node 1 node 1 node

70 CPUs 160 CPUs 10 CPUs 10 CPUs 166 CPUs 166 CPUs 243 CPUs



Conclusions
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* Inevitable shift towards more use of modeling and simulation to test
hypotheses, optimize methods, predict inspectability, etc

* This is a good thing, as it may enable new approaches and cost-
effective investigation of inspection methods

* However, validation is a key step with many challenges

* Whether custom or commercial simulation software is used, it is of
key importance to know that validation has been performed and
successful
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Thanks to: Eric Burke, NASA LaRC

END



