NASA GL-10 Tilt-Wing VTOL UAS
Flight Validation Experiments

William J. Fredericks
David D. North, Mark A. Agate, Zachary R. Johns
NASA Langley Research Center, Hampton, VA, 23681

AIAA Aviation 2015 Conference
Transformational Flight ATIO-13 Advanced Concepts Session
Outline

• Motivation for Research
• Key Technologies
• Key Benefits
• Project History
• Flight Testing Campaign
• Conclusions
 Acknowledgements

• NASA Langley Systems Analysis can Concepts Directorate (SACD)

• Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project, formally known as Vertical Lift Hybrid Autonomous (VLHA) Project
Motivation for Research

- Combine VTOL and cruise efficiency
- Achieve direct to destination transportation
 - Acceptable cost
 - Minimal surface infrastructure
 - Energy frugal → Efficient Cruise
 - Community Friendly
 - Low noise
 - Low/zero emissions

http://www.army.mil/article/71269/Army_to_deploy_vertical_take_off_UAS/

Credit: ALMA (ESO/NAOJ/NRAO), http://www.eso.org/public/images/ann13067a/, licensed under Creative Commons Attribution 4.0 International License
Key Technologies

Distributed Electric Propulsion (DEP)

- Scale Free
 - Nearly constant P/W & Efficiency with size.
- No longer a need to centralize to the minimum number of propulsors.
- Provides a new degree of freedom for aircraft design.

Closed Loop Controls

- Provides artificial stability augmentation to unstable aircraft.
- Smart phone industry enabled low cost IMU sensors.
- There are now dozens COTS closed loop flight control systems that cost less than $200.
Key Benefits

• Cruise Efficiency
 – 4x improvement in L/D relative to helicopter
 – Disk loading is matched to thrust requirement in both configurations.

• Low Community Noise
 – Low Tip Speed Propellers (500 ft/s in hover)
 – Spread spectrum phasing to reduce perceptibility of noise

• Ultra Safe Operations
 – Any motor or propeller can fail at any time and vehicle can safely continue flying.
 – Minimize motor oversizing penalty.

• Test Platform for New Technologies
 – Electric Propulsion
 – Autonomy
 – Acoustics
Design Evolution

Phase I

Phase II

Phase III
Greased Lightning

Variable Pitch Forward Flight Props

Fixed Pitch Vertical Flight Props (shown folded)

Payload

Batteries housed in each nacelle

Qty 2 Diesel Engines 8 hp each Turning Alternators

Fuel Tank

Retracted Landing Skids

Satellite Communication System
Airframe Detail Design and Fabrication

Aeronautics Systems Analysis Branch, SACD, LaRC
Flight Testing Phases

1. Foamie Hover
2. Foamie Transition
3. GLARF Hover
4. GLARF Transition
5. Greased Lightning Hover
6. Greased Lightning Transition

Indicates Free Flight
Indicates Tethered Flight
Objectives:

• Prove control architecture of open source flight control software can control a vehicle of this configuration.

• Build confidence in COTS flight controller hardware.
GLARF Flight Testing

Objectives:
- Estimate PID gains for GL-10 aircraft
- Determine wing and tail rotation schedule through transition corridor
- Further build confidence in COTS software and flight control hardware
Objectives:

- Validate capability to transition a cruise efficient aircraft at a relevant scale
- Validate robust control authority throughout transition corridor
- Gain knowledge about the benefits and weakness of the aircraft concept
- Prove technical feasibility of cruise efficient VTOL aircraft to enable new aviation markets
Transition Corridor

Note: differences in wing tilt angle readings caused by calibration differences between different test days.
Conclusions

• It has been demonstrated, via flight test, that it is possible to have a vehicle that is both vertical takeoff and landing (VTOL) and transition into cruise efficient in wing born flight.
• The VTOL cruise efficient aircraft has sufficient control power through out the transition corridor (a short coming of previous VTOL aircraft).
• Use thrust vector control rather than slipstream control.
• This aircraft concept will enable a revolutionary increase in mobility to enable new aviation markets like:
 – Surveillance (Power line / Pipe line inspections, Farms, Marine Science / Fisheries Monitoring, etc.)
 – Package Delivery
 – Personal Transportation
Next Steps

- Demonstrate 4 times more aerodynamically efficient than a similarly sized helicopter in cruise.
- Demonstrate an autonomous control system not requiring a pilot.
- Demonstrate a hybrid range extender to increase range/endurance 6 times.
- Demonstrate lighter weight, more efficient electric motors and lower noise propellers.
- Demonstrate a reasonable (>35%) useful load fraction (a short coming of previous VTOL aircraft).
Questions

YouTube Video:
“Greased Lightning GL-10 Successful Transition Test”

www.youtube.com/watch?v=kXql26sF5uc
Concept Comparison Summary

<table>
<thead>
<tr>
<th></th>
<th>Trifecta</th>
<th>Dos Samara</th>
<th>Split Wing</th>
<th>Greased Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTOW (lbs)</td>
<td>264</td>
<td>247</td>
<td>281</td>
<td>264</td>
</tr>
<tr>
<td>Wingspan (ft)</td>
<td>19.90</td>
<td>20.0</td>
<td>20.53</td>
<td>20.0</td>
</tr>
<tr>
<td>Fuselage Length (ft)</td>
<td>12.25</td>
<td>12.5</td>
<td>10.5</td>
<td>11.0</td>
</tr>
<tr>
<td>Wing Loading (lbs / sq ft)</td>
<td>10.0</td>
<td>8.5</td>
<td>10.0</td>
<td>9.1</td>
</tr>
<tr>
<td>Disc-loading (lbs/sq ft)</td>
<td>4.0</td>
<td>1.64</td>
<td>2.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>15.0</td>
<td>13.77</td>
<td>15.0</td>
<td>13.6</td>
</tr>
<tr>
<td>L/D</td>
<td>20.0</td>
<td>19.5</td>
<td>20.4</td>
<td>19.6</td>
</tr>
<tr>
<td>VTOL Power Required (hp)</td>
<td>22.8</td>
<td>16.1</td>
<td>22.4</td>
<td>21.9</td>
</tr>
<tr>
<td>Dash Power Required (hp)</td>
<td>5.7</td>
<td>5.8</td>
<td>5.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Loiter Power Required (hp)</td>
<td>3.1</td>
<td>2.8</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Initial Loiter Speed (kts)</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>69</td>
</tr>
</tbody>
</table>
Figure 5.13 Example of equivalent lift-to-drag ratios for rotor and complete helicopter.