Composite characterization using laser Doppler vibrometry and multi-frequency wavenumber analysis

By Peter Juarez and Dr. Cara Leckey

NASA Langley Research Center
Nondestructive Evaluation Sciences Branch
Motivation

Composite Solutions Applied Throughout the 787

- Carbon laminate
- Carbon sandwich
- Fiberglass
- Aluminum
- Aluminum/steel/titanium pylons

- Composites 50%
- Titanium 15%
- Aluminum 20%
- Steel 10%
- Other 5%
Motivation

Barely Visible Damage (BVD)
IM7/8552(1D) 15 x 15 2G-PLY

[(0/45/-45/90)]
Motivation

Low velocity impact

Ply layers

Carbon fiber composite
• 26 ply carbon fiber panel 15”x15”, quasi-isotropic layup ([0/45/-45/90]_3/0)_s

• Damaged using a static point load of 1511 lbf until failure, then scanned using a traditional nondestructive evaluation technique (ultrasonic immersion tank scanning)
Data was collected from a Scanning Laser Doppler Vibrometer (SLDV) while acoustic waves were excited in the panel with a contact transducer.

Goal: to correlate the SLDV data to the size and depth of the delaminations in the composite.
What are we detecting?
What are we detecting?

1/wavelength = wavenumber

Lamb wave
What are we detecting?

Delamination
Any relationship between wavenumber and location is lost.
Local wavenumber technique

Wavefield data over time

Time

$X (mm)$

$Y (mm)$
Local wavenumber technique

Wavefield data over time

FFT

Wavefield data over frequency
Local wavenumber technique

FFT

Wavefield data over frequency
Local wavenumber technique
Local wavenumber technique
Local wavenumber technique

2D FFT

2D FFT

k_x k_y
Local wavenumber technique
Local wavenumber technique
Local wavenumber technique

2D FFT

X Y

k_x k_y
Local wavenumber technique

Next: Window size
Window size
Window size
Window size
Dechirp process

Data recorded using chirp excitation

Chirp Excitation Signal

Desired single frequency signals

\[u(x, y, t) = \mathcal{F}^{-1}\left[\frac{\mathcal{F}(R_c(x, y, t))}{\mathcal{F}(S_c(x, y, t))} \ast \mathcal{F}(S_d(x, y, t)) \right] \]

Single frequency excitation data

Nondestructive Evaluation Sciences Branch
Differences in frequencies: Wavefields

- 200kHz
- 300kHz
- 400kHz
- 500kHz

Next: LWT results
Differences in frequencies: Wavenumber

Next: Dispersion curves
Nondestructive Evaluation Sciences Branch

Frequency

Wavenumber

Ply 1
Ply 2
Ply 3
Ply 4

Next: Curve correlation
Multi-frequency wavenumber-ply correlation

\[k(x, y, f_1) \]

\[k(x, y, f_2) \]

\[k(x, y, f_3) \]

\[k(x, y, f_4) \]
Multi-frequency wavenumber-ply correlation
Multi-frequency wavenumber-ply correlation
Multi-frequency wavenumber-ply correlation

\[\text{Ply}(x, y) \approx \text{Ply}_2 \]
Ply correlation results

- Correlation frequency range: 300kHz-400kHz in 5kHz steps
- 10mm window
- 0.3mm spatial resolution
- 20MHz sampling rate
Ply correlation results
Sources of error: standard deviation
Sources of error: dispersion curves
Conclusions

• The local wavenumber technique is capable of very accurate determination of the shape and size of interlamina damage in composite panels, especially when considering multiple frequencies.

• Using multi-frequency wavenumber-ply correlation can determine the depth location of damage in many instances, but struggles with deeper and smaller delaminations.

• Future research will be conducted to improve this methodology using wave domain filtering, better dispersion curve generation, and more robust correlation methods.
I.M. Daniel, O. Ishai

M. Richardson, M. Wisheart
Review of low-velocity impact properties of composite materials

B. Li, Y. Liu, K. Gong, Z. Li
Damage localization in composite laminates based on a quantitative expression of anisotropic wavefront

Z. Liu, F. Yu, R. Wei, C. He, B. Wu
Image fusion based on single-frequency guided wave mode signals for structural health monitoring in composite plates

M.D. Rogge, C.A. Leckey
Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis

T.E. Michaels, J.E. Michaels, M. Ruzzene
Frequency–wavenumber domain analysis of guided wavefields
Ultrasonics, 51 (4) (2011), pp. 452–466

Z. Tian, L. Yu, C. Leckey
Delamination detection and quantification on laminated composite structures with lamb waves and wavenumber analysis

C.A. Leckey, M.D. Rogge, C.A. Miller, M.K. Hinders
Multiple-mode lamb wave scattering simulations using 3d elastodynamic finite integration technique
Ultrasonics, 52 (2) (2012), pp. 193–207

C.A. Leckey, M.D. Rogge, F.R. Parker
Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment
Ultrasonics, 54 (1) (2014), pp. 385–394 http://dx.doi.org/10.1016/j.ultras.2013.05.007

H. Sohn, D. Dutta, H. Yang, M. Park, M. DeSimio, S. Olson, E. Swensen
Delamination detection in composites through guided wave field image processing
References

C.A.C. Leckey, J. Seebo
Guided wave energy trapping to detect hidden multilayer delamination damage

E.B. Flynn, S.Y. Chong, G.J. Jarmer, J.-R. Lee
Structural imaging through local wavenumber estimation of guided waves
NDT & E Int., 59 (2013), pp. 1–10

J.E. Michaels, S.J. Lee, A.J. Croxford, P.D. Wilcox
Chirp excitation of ultrasonic guided waves

V. Herb, G. Couégnat, E. Martin
Damage assessment of thin SiC/SiC composite plates subjected to quasi-static indentation loading

G. Williams, R. Trask, I. Bond
A self-healing carbon fibre reinforced polymer for aerospace applications

V.V. Bolotin
Delaminations in composite structures: its origin, buckling, growth and stability

G. Clark
Modelling of impact damage in composite laminates

B. Pavlakovic, M. Lowe, D. Alleyne, P. Cawley
Disperse: a general purpose program for creating dispersion curves