Composite characterization using laser Doppler vibrometry and multi-frequency wavenumber analysis

By Peter Juarez and Dr. Cara Leckey

NASA Langley Research Center
Nondestructive Evaluation Sciences Branch
Motivation

Composite Solutions Applied Throughout the 787

- Carbon laminate
- Carbon sandwich
- Fiberglass
- Aluminum
- Aluminum/steel/titanium pylons

- Steel 10%
- Titanium 15%
- Aluminum 20%
- Composites 50%
- Other 5%
Motivation

Barely Visible Damage (BVD)
IM7/8552(10) 15 x 15 2G-Ply

[(0/45/-45/90)]
Motivation

Low velocity impact

Ply layers

Carbon fiber composite
Goal of research

- 26 ply carbon fiber panel 15”x15”, quasi-isotropic layup ([0/45/-45/90]_3/0)_s

- Damaged using a static point load of 1511 lbf until failure, then scanned using a traditional nondestructive evaluation technique (ultrasonic immersion tank scanning)
Normal to YZ plane

Normal to XY plane
Goal of research

- Data was collected from a Scanning Laser Doppler Vibrometer (SLDV) while acoustic waves were excited in the panel with a contact transducer.

- Goal: to correlate the SLDV data to the size and depth of the delaminations in the composite.
What are we detecting?
What are we detecting?

Lamb wave

$\frac{1}{\text{wavelength}} = \text{wavenumber}$
What are we detecting?

Delamination
Wavenumber Domain Analysis

Sample time domain wave field

Any relationship between wavenumber and location is lost
Local wavenumber technique

Wavefield data over time

Time

X (mm) Y (mm)

0 0 50 50 100 100 150 150 200 200
Local wavenumber technique
Local wavenumber technique

Wavefield data over frequency
Local wavenumber technique
Local wavenumber technique

Nondestructive Evaluation Sciences Branch

2D FFT

Slide 11.2
Local wavenumber technique

2D FFT

k_x k_y

Nondestructive Evaluation Sciences Branch
Local wavenumber technique
Local wavenumber technique

2D FFT

\mathbf{X} \mathbf{Y}

k_x k_y
Local wavenumber technique

2D FFT

2D FFT

$2D FFT \rightarrow k_x \rightarrow k_y$
Local wavenumber technique
Window size
Window size
Window size
Dechirp process

Data recorded using chirp excitation

Chirp Excitation Signal

Desired single frequency signals

\[u(x, y, t) = F^{-1} \left[\frac{F(R_c(x, y, t))}{F(S_c(x, y, t))} \ast F(S_d(x, y, t)) \right] \]

Single frequency excitation data

Desired single frequency signals
Differences in frequencies: Wavefields

- 200kHz
- 300kHz
- 400kHz
- 500kHz
Differences in frequencies: Wavenumber

350kHz

400kHz

450kHz

500kHz

550kHz

750kHz

Next: Dispersion curves
Multi-frequency wavenumber-ply correlation

\[k(x, y, f_1) \]

\[k(x, y, f_2) \]

\[k(x, y, f_3) \]

\[k(x, y, f_4) \]
Multi-frequency wavenumber-ply correlation

Diagram showing the relationship between wavenumbers $k_1, k_2, k_3,$ and k_4 against frequencies $f_1, f_2, f_3,$ and f_4.
Multi-frequency wavenumber-ply correlation

Nondestructive Evaluation Sciences Branch
Multi-frequency wavenumber-ply correlation
Multi-frequency wavenumber-ply correlation

\[\text{Ply}(x, y) \approx \text{Ply}_2 \]
Ply correlation results

- Correlation frequency range: 300kHz-400kHz in 5kHz steps
- 10mm window
- 0.3mm spatial resolution
- 20MHz sampling rate
Ply correlation results

[Image showing a color-coded diagram with labels A, B, C, 10/11, 14/15, 15/16, 16/17, 17/18, 6/7, 7/8, 9/10.]

Next: Dispersion curve
Sources of error: standard deviation
Sources of error: dispersion curves
Conclusions

- The local wavenumber technique is capable of very accurate determination of the shape and size of interlamina damage in composite panels, especially when considering multiple frequencies.
- Using multi-frequency wavenumber-ply correlation can determine the depth location of damage in many instances, but struggles with deeper and smaller delaminations.
- Future research will be conducted to improve this methodology using wave domain filtering, better dispersion curve generation, and more robust correlation methods.
References

I.M. Daniel, O. Ishai

M. Richardson, M. Wisheart
Review of low-velocity impact properties of composite materials

B. Li, Y. Liu, K. Gong, Z. Li
Damage localization in composite laminates based on a quantitative expression of anisotropic wavefront

Z. Liu, F. Yu, R. Wei, C. He, B. Wu
Image fusion based on single-frequency guided wave mode signals for structural health monitoring in composite plates

M.D. Rogge, C.A. Leckey
Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis

T.E. Michaels, J.E. Michaels, M. Ruzzene
Frequency–wavenumber domain analysis of guided wavefields
Ultrasonics, 51 (4) (2011), pp. 452–466

Z. Tian, L. Yu, C. Leckey
Delamination detection and quantification on laminated composite structures with lamb waves and wavenumber analysis

C.A. Leckey, M.D. Rogge, C.A. Miller, M.K. Hinders
Multiple-mode lamb wave scattering simulations using 3d elastodynamic finite integration technique
Ultrasonics, 52 (2) (2012), pp. 193–207

C.A. Leckey, M.D. Rogge, F.R. Parker
Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment
Ultrasonics, 54 (1) (2014), pp. 385–394 http://dx.doi.org/10.1016/j.ultras.2013.05.007

H. Sohn, D. Dutta, H. Yang, M. Park, M. DeSimio, S. Olson, E. Swensen
Delamination detection in composites through guided wave field image processing
References

C.A.C. Leckey, J. Seebo
Guided wave energy trapping to detect hidden multilayer delamination damage

E.B. Flynn, S.Y. Chong, G.J. Jarmer, J.-R. Lee
Structural imaging through local wavenumber estimation of guided waves
NDT & E Int., 59 (2013), pp. 1–10

J.E. Michaels, S.J. Lee, A.J. Croxford, P.D. Wilcox
Chirp excitation of ultrasonic guided waves

V. Herb, G. Couégnat, E. Martin
Damage assessment of thin SiC/SiC composite plates subjected to quasi-static indentation loading

G. Williams, R. Trask, I. Bond
A self-healing carbon fibre reinforced polymer for aerospace applications

V.V. Bolotin
Delaminations in composite structures: its origin, buckling, growth and stability