A Perspective on Loads and Dynamics in NASA Programs and Engineering

Curtis E. Larsen, Ph.D., P.E.
NASA Technical Fellow for Loads and Dynamics
Obvious Challenges

• Human Spaceflight
 • International Space Station
 • Access via Soyuz
 • Commercial Crew Program:
 • United Launch Alliance (ULA) Atlas V and Boeing CST-100
 • SpaceX Falcon 9 and Crew Dragon
 • Space Launch System (SLS) and Orion Multipurpose Crew Vehicle (MPCV)

• Robotic Exploration and Science
 • James Webb Space Telescope (JWST)
Tumbling Progress

- https://youtu.be/xwqMw0s_RHs
LAS – Why do we need this?

• https://youtu.be/UyFF4cpMVag
MLAS
The Forerunner of Alternate Abort Systems

• https://www.youtube.com/watch?v=g2Z35JqnV7I
SpaceX Pad Abort Test

- https://www.youtube.com/watch?v=1_FXVjf46T8
Delta IV EFT-1 Launch Highlights

- https://www.youtube.com/watch?v=eO89KowRfiY
Discipline Specific Challenges

• Particular areas for improvement include
 • Unsteady aero - understanding and implementation
 • Protuberance airloads
 • Efficient execution of integrated design cycle.
 • OTM’s
 • Highly non-linear, complex systems with significant uncertainties such as
 • expandable structures
 • joints
 • damping
 • landing

• Areas in need of advancement or breakthrough
 • Quick turn around coupled loads analysis (between major CLA cycles)
 • Higher fidelity than PMAC, MMAC
 • Shock prediction and testing
 • Ascent loads and vibroacoustics IV&V
 • interdisciplinary Monte Carlo ascent loads
 • NASA in-house vibroacoustic tool
 Loads and Dynamics
THANK YOU