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» Transition testing in hypersonic ground facilities

« an important avenue to understanding the laminar-turbulent transition

behavior of hypersonic vehicles

= Most hypersonic wind tunnels have elevated freestream disturbances
= Tunnel Disturbances have a large impact on Transition at M > 1
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sackground
Disturbance Environment for Wind-Tunnel Facilities
(Blanchard et al. 1997)
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In a conventional (“noisy”) tunnel, tunnel disturbances dominated by
acoustic radiation from tunnel wall turbulent boundary layers for M > 2.5
(Laufer, 1964) 3



Methodology

Approach
High-fidelity simulation of acoustic radiation from
tunnel-wall turbulent boundary layers

Upstream

Disturbance $1) Acoustic Radiation

Turbulent Tunnel Wall/'

Boundary Layer

Impact: Understanding the acoustic fluctuations in wind tunnels and
their influence on boundary layer transition would enable

» Better use of transition data
* Meaningful application of receptivity theory (Fedorov and Khokhlov, 1991)
» Potential reconciliation of differences in transition onset across multiple facilities

I
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Acoustic Radiation from High-Speed Turbulent BLs
Theory

« Eddy Mach wave convecting supersonically with respect to free
stream (Phillips, 1960; Ffowcs-Williams & Maidanik 1963)

« Restricted to prediction of intensity of the freestream fluctuation

Experiments

« Laufer (1961, 1964); Kendall (1970); Rufer (2000); Bounitch et al. (2011);
Masutti et al. (2013); Radespiel et al. (2013)

* Mostly limited to amplitude and spectra with limited bandwidth; no multi-point
statistics
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Acoustic Radiation from High-Speed Turbulent BLS

Direct Numerical Simulations (Duan et al., AIAA 2012-3070, AIAA
2013-0532, AIAA 2014-2912, JFM vol. 746, pp 165-192, 2014 )

— include both the flow field and near-acoustic field

— isolate a purely acoustic freestream disturbance field above a single tunnel
wall

— ldentify generic statistical and spectral features of freestream disturbances
— Open doors to further simulations of receptivity in a tunnel-like environment

DNS datasets:
— M.,=25,T,/T.= 1.0, Flat Plate
— M. =5.86, T,/T, = 0.76, Flat Plate (M6Tw076) & T,/T. = 0.25, Flat Plate (M6Tw025)

* Freestream condition representative of Purdue Quiet Tunnel under noisy
condition with p, =132 psi, T, =432 K

- M.=14,T,/T, =0.18 (M14Tw018) Flat Plate
* Freestream condition representative of AEDC Tunnel 9 at p, = 1,023 psi

« Comparison with Boundary-layer measurements at AEDC Tunnel 9 (Expected)
6



Comparison with Experiment (M6Tw076)
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Mean flow predictions and wall-p’ frequency spectrum are in good agreement with

the measurements in the Boeing/AFOSR Mach 6 Quiet Tunnel under noisy condition '
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Normalized Frequency Spectra
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DNS Setup

Case M14Tw18 samping |
Box2 DNS "/'a,'lg g\g[rj/x

Interpolation // //
M. =14, Rey= 13152,

Re, ~633, T, /T, ~0.18 ‘ '

Recycling
Box1 DNS plane/

= WENO (Jiang &
Shu 1996, Martin et
al. 2007)

. Uniform grid in streamwise-spanwise direction:
e Ax*=94, Ay*=47

» Az, *=0.47,N, =19 for z* < 10,

» Az,*=58.7, N,=186forz <9

" N, x N, x N, = 2500 x 460 x 540 (Box 1 DNS)

= N, x N, x N, = 1500 x 460 x 786 (Box 2 DNS)

» Grids designed to simultaneously resolve both the
hydrodynamic disturbances and near-acoustic field J
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Numerical Schlieren Visualization
M14Tw18
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X/
= large scale motions cause incursions of the freestream irrotational flow into
the boundary layer
= Distributed regions of strong density gradient can be seen within the

boundary layer
 Existence of ‘shocklets’???
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van Driest Transformed Mean Velocity Profile
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Turbulence Intensities

[/ ———— M25, T /T=1

. S M6, T /T =0.76
\ — — — — M6, T.T=0.25
\ ————— M14,T T =0.18

3 K N & M5T2, Duan et al.
e @R\ \ m Spalart Re = 1410
2 B . A Spalart Rez= 670
e e O Maeder et al. M= 4.5

\ SE— — M5T1, Duan et al.

(p/py) U’ mg/U,

NLawNNC

Vi

N R K P

CBANP A
RIS

NN

vz

T VAVA Faw

STAAVA VAN
AVAW WA

— M25, T /T =1
——————— M6, T /T =0.76

— — — — M6, T /T=0.25
— M14,T /T =0.18
———— — M5T1, Duan et al.
& M5T2, Duan et al.

0 Spalart Re = 1410
Za Spalart Re = 670

O Maeder et al. M=4.5
> Peltier et al. M=4.9

Significantly improved collapse of data is achieved by Morkovin’s scaling

12




MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Turbulent Mach Number and Fluctuating Mach

Number
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Pressure Fluctuation Intensity

p'l‘mS/TW

1

M2.5, T /T =1
——————— M6, T /T =0.76

M8, T_/T =0.25
— —— — M14,T /T =0.18

T Tw

TR S N TN T TN N T NN SN Y [N T Y N TR AN SO SN N

0.5 1 1.5 2

z/5

p‘rms/rcw

M2.5, T /T =1
——————— M6, T /T =076

M6, T /T =0.25
— —— — M14, T /T=0.18

I Tw Tr
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Pre-multiplied p’ Frequency Spectra
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p’ spectrum peak shifts to lower frequencies as the location of interest moves
away from the wall




MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Pre-multiplied p’ Frequency Spectra
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Good convergence of p’ spectra in the free stream
Freestream p’ spectrum centered at f6/U_, = 0.7
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Fluctuating Wall Quantities
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Propagation Speed of Acoustic Disturbance
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Numerical Schlieren Visualization

M.=14, T, JT.=0.18

* Random
* Finite spatial coherence

» Preferred range of orientation for eddy Mach waves
» Higher inclination than Mach wave direction

19
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Summary and Conclusion

* Turbulence statistics and pressure fluctuations induced by a Mach 14 turbulent

boundary layer were investigated
- M, =14,Re. =633, T,/T,=0.18 (a condition of AEDC Tunnel 9)
e Velocity fluctuations scales according to the Morkovin’s scaling

* Property of pressure fluctuations varies dramatically as a function of wall-normal

distance within the inner layer (z/6 < 0.08 or z" < 50)
— fluctuation magnitude p’ /T,
- dominant frequency f,, associate with pressure spectrum
* Fluctuating wall quantities (p°,,, T°y» Q')
- Large fluctuation amplitude relative to the mean values (p’,,./p,, =24%, T’ /ns/
Ty = 33%, Q4 s/ Ay = 67%)
— A match in dominant frequency amongp’,,, v’ q’,, With f6/U_ = 2

* Freestream pressure fluctuations involves a broadband peak centered at f6/U

~
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Outlook

Facility Disturbance + Receptivity

_~==——_ Freestream acoustic disturbances
o

- .
—— = radiated from tunnel-wall turbulent
= boundary layers

B u’ —) Stochastic Acoustic stochastic variables (Uc, 6, ¢, w, etc)
v’ disturbance field
Tw [ =Exp[-iwt—iw/U {x+tan(B) z = tan(§) y} ]
p’ F\r‘equéncy N Propagation \ - 7
Speed Inclination angle

spectrum
Laminar Oscillator

0 0>0—>0%

External Forcing

Receptivity Lin€ar  Nonlinear  Laminar
Growth  Eyolution Breakdown

\Bypass M 4 .
Transient Growth Choudhari et al. 2003

Provide “practical” input data regarding disturbance environment for conducting
stability analysis in the context of actual wind-tunnel experiments
Enable holistic prediction of transition in High-Speed Boundary Layers

21
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