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Uncertainties in cloud feedback remain in GCMs

Soden and Vecchi (2011):
• Low cloud cover is responsible for ~3/4 of the difference in global-mean net 

cloud feedback among AR4 models, with the largest contributions associated 
with low-level subtropical marine cloud systems;

• The low-cloud inconsistency and deficiency in most of the models.



CAM5, CAM5 (IPHOC; CLUBB), and AM3 
(CLUBB, CLUBB+)

 
 
 
 
 
 
  
 
  

Macrophysics 
Park 

Nucleation 
Liu et al 

Microphysics 
Morrison-
Gettelman 

Radiation 
RRTM 

Land 
surface 

CLM 

Turbulence 
Park-

Bretherton 

Dynamics 
finite volume 

Lin 

Deep/shallow 
Convection 

Zhang-
McFarlane/

Hack 

Model state is updated 
after each process 
(“sequential-split”) 

 
 
 
 
 
  
 
  

Macrophysics 
(ice phase) 

Park 

Nucleation 
Liu et al 

Microphysics 
Morrison-
Gettelman 

Radiation 
RRTM 

Land 
surface 

CLM 

Dynamics  
finite volume 

Lin 

Deep convection 
Zhang-McFarlane 

IPHOC or 
CLUBB 

Model state is updated 
after each process 
(“sequential-split”) 

CLUBB+



The higher-order turbulence closure approach

Advance 12 prognostic equations

Select PDF from given family
to match 12
moments

Use PDF to close higher-order 
moments, buoyancy terms

Diagnose cloud fraction,
liquid water from PDF

Golaz et al. (2002); Cheng & Xu (2006, 2011)
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Differences between IPHOC and CLUBB used in 
GCMs?

CLUBB (Cloud Layers Unified by Binormals; Golaz et al. 2002);
IPHOC (Intermediately Prognostic Higher-order turbulence 

Closure; Cheng and Xu 2008)
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Global Distribution of Annual Mean Low Cloud Fraction -
- IPHOC

Differences in mean, RMS, correlation, subsidence regions, 
and storm track regions

CloudSat/CALIPSO Obs.



Global Distribution of Annual-Mean SW Cloud-radiative 
Forcing -- IPHOC

Global mean from CAM5-IP is the closest to CERES 
slightly weaker negative forcing from low clouds

CERES-EBAF Obs.



CAM5, CAM5-CLUBB (tuned) cloud fraction 
and SW cloud radiative forcing

OBS.

CAM5

CAM5-
CLUBB



GFDL AM3, AM3-CLUB and tuned versions
SW Cloud radiative forcing differences from CERES

Parameter Tuned Original
C1 1.0 2.5
C4 1.0 5.2
C5 0 0.3
C6 0.5 4.0
C7 0.8 0.5
C11b 0.15 0.35
Wpxp_L 150 60
C6_Lscale0 30 14
C7_Lscale0 0.99 0.85

Variable v: cloud water variance 
from CLUBB (0.001-10)
Enhanced accretion rates (10%)



GDFL AM3 united parameterization, CLUBB+

Low cloud fraction

SW cloud radiative forcing difference



Tuned parameter tests in CAM5-CLUBB (Guo et al. 
2015)



Sensitivity to Tuning parameter tests in CAM5-
CLUBB (Guo et al. 2015)



Summary and conclusions
• The higher-order turbulence closure approach offers a promising 

approach to subgrid-scale variability.
• The low-level clouds are improved in different GCM simulations and 

the biass in SW cloud radiative forcing are reduced.
• The potential for realistic simulation of cloud processes is great with 

the higher-order turbulence closure approach, for example, coupling 
with cloud microphysics, and unified low and deep convection 
parameterization. 

• Sensitivity to parameters are especially strong for skewness-related 
parameters. A better constraint is needed from global observations.


