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Motivation

Paths to transition1: The rule of transient growth
The non-normality of the NS equations can
give rise to transient energy amplification

The nonnormality of the system can give rise to transient energy amplification.  

Even though we experience exponential decay for large times, the non-
orthogonal superposition of eigenvectors can lead to short-time growth of 
energy.   

Geometric interpretation:  

23. September, 2014 ANADE  

Geometric interpretation

Transient growth is a candidate mechanism for
several cases of bypass transition wherein the
route to laminar-turbulent transition bypasses
the well-known paths to turbulence via modal
instabilities of the underlying laminar basic
state, for example:

I large bluntness cones,
I spherical forebodies, ...

1M.V. Morkovin, E. Reshotko, and T. Herbert. “Transition in open flow systems - A reassessment”. In: Bull. Am. Phys.
Soc. 39:1882 (1994).
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Motivation

Large bluntness cones2
Motivation

Large bluntness cones2

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e Approved for public release, distribution is unlimited.Distribution is unlimited, AEDC PA 2014-087 

Model Configurations

10

� 7° Half-Angle

� Reference Length: 
1.55-m (5.1-ft)

� Base Diameter: 
0.381-m (15-in.)

Rn=0.15-mm

Rn=5.08-mm

Rn=9.53-mm

Rn=12.7-mm

Rn=25.7-mm

Rn=50.8-mm
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Effect of Bluntness              
(Re/m ≈ 17×106)

ST/XSW ≈0.4 
� Delayed 2nd mode and increase length 

for growth & breakdown Æ transition 
moves back vs. sharp

0.1< ST/XSW <0.3 
� Delayed 2nd mode; start of transition 

precedes significant growth Æ
different transition mechanism?

0.01< ST/XSW <0.07 
� No 2nd mode before start of transition; 
� Me ≈ 3.3 at start of transition 
� Transition mechanism is not known

� Transient growth 
� Entropy layer instability 
� ???

24

Sharp ST/XSW ≈ 0.4

ST/XSW ≈ 0.3

ST/XSW ≈ 0.07 ST/XSW ≈ 0.02

ST/XSW ≈ 0.2

ST

Small blutness: the transition front moves back relative to sharp cone.
Large blutness: the transition front moves forward. Why?

2E.C. Marineau et al. Mach 10 boundary-layer transition experiments on sharp and blunted cones. AIAA Paper 2014-3108.
2014.
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Small blutness: the transition front moves back relative to sharp cone.
Large blutness: the transition front moves forward. Why?

2E.C. Marineau et al. Mach 10 boundary-layer transition experiments on sharp and blunted cones. AIAA Paper 2014-3108.
2014.
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Motivation

Spherical forebodies: the blunt body paradox3,4

Transition observed while the flow is T-S stable, Görtler stable (convex
curvature) and crossflow is negligible. Why?

2Note that images for Re=5.0E6/ft and Re=5.8E6/ft are interchanged.
3E. Reshotko and A. Tumin. “The blunt body paradox - A case for transient growth”. In: Proc. of the IUTAM

Laminar-Turbulent Symposium V. ed. by H. Fasel and W. Saric. Sedona, AZ, USA, 2000, p. 403.
4B.R. Hollis. Blunt-body entry vhicle aerothermodynamics: transition and turbulence on the CEV and MSL configurations.

AIAA Paper 2010-4984. 2010.
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Motivation

Can TG theory explain transition in these cases?7

Reshotko and Tumin5 suggested transient growth as a possible explanation
for transition over blunt nose tips and showed that a transition criterion
based on linear optimal growth provided successful correlation with the
PANT database (M ≤ 6).
Recent data6 corresponds to higher Mach numbers (M ≥ 6).

Current ongoing work:
supersonic and hypersonic Mach numbers

nonlinear effects (nonlinear streak development, streak instabilities, interaction
with boundary layer instabilities, ...)

spatial approach including non-parallel effects

realistic geometries
5E. Reshotko and A. Tumin. “Role of Transient Growth in Roughness-Induced Transition”. In: AIAA J. 42 (2004),

pp. 766–770.
6E.C. Marineau et al. Mach 10 boundary-layer transition experiments on sharp and blunted cones. AIAA Paper 2014-3108.

2014.
7P. Paredes et al. Transient growth analysis of compressible boundary layers with parabolized stability equations. (Submitted

to SciTech 2016). 2016.
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Summary

Zero-pressure-gradient flat plate BL at Mach 3
Linear optimal disturbances

I Verification against prior results using self-similar base flow solution
I Extension to N-S base flow solution including leading edge shock

Non-linear evolution of finite-amplitude linearly optimal disturbances
Instability analysis of the perturbed flow

Examples of supersonic/hypersonic vehicles with flat plate components:

BOEING X-51A (Mach 5)8 NASA X-43A (Mach 10)9

8http://www.wpafb.af.mil/news/story.asp?id=123346970
9http://www.nasa.gov/missions/research/x43-main.html
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Theory

Transient growth analysis using PSE10

The optimal initial disturbance, q̃0, is defined as the inflow condition at x0
that leads to maximum energy amplification or gain, G , up to a specified
position, x1.
Objective function: J(q̃) = G = E(x1)

E(x0) .
Mack’s energy norm: E (ξ) =

∫
Ω q̃(x)HMq̃(x) dΩ, with

M = diag
[

T̄ (x)
γρ̄(x)M2 , ρ̄(x), ρ̄(x), ρ̄(x), ρ̄(x)

γ(γ − 1)T̄ (x)M2

]
.

Variational formulation using direct and adjoint PSE,

L(q̃, q̃∗) = J(q̃)− 〈q̃∗,Lq̃〉,

where q̃∗ denotes the vector of adjoint disturbance variables.
The PSE approach allows the analysis of a broader class of mean flows
including those based on NS solvers.

10J.O. Pralits et al. “Optimal disturbances in three-dimensional boundary-layer flows”. In: Ercoftac Bull. 74 (2007),
pp. 23–31.
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Theory

Non-linear development of optimal perturbations
The linearly optimal disturbance is used as inflow condition with finite
amplitude.
The nonlinear-perturbation form of the parabolized Navier-Stokes equations
are used, which is equivalent to the nonlinear plane-marching PSE11 for a
single stationary perturbation (N = 0, α0 = 0):

q̃(x , y , z , t) =
N∑

n=−N
q̂n(x , y , z) exp

[
i
∫

x
αn(x ′)dx ′ − inωt

]
,

An implicit marching technique is used to facilitate the computation of
nonlinear streaks with large amplitudes.
The instability of the resulting modified boundary layer flow is investigated
by the linear form of the plane-marching PSE12.

11P. Paredes et al. “The nonlinear PSE-3D concept for transition prediction in flows with a single slowly-varying spatial
direction”. In: Procedia IUTAM 14C (2015), pp. 35–44.

12P. Paredes. “Advances in global instability computations: from incompressible to hypersonic flow”. PhD thesis.
Universidad Politécnica de Madrid, 2014.
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Results Optimal disturbances in flat plate boundary layers

Verification: Optimal gain vs. spanwise wavenumber13,14

Compressible, self-similar, flat plate boundary layer
ReL = 108 to enable comparison with asymptotic optimal growth results
based on boundary layer equations

M = 10−3
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M = 3, T0 = 333 K
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Tw/Tad = 0.25

13P. Andersson, M. Berggren, and D.S. Henningson. “Optimal disturbances and bypass transition in boundary layers”. In:
Phys. Fluids 11 (1999), pp. 134–150.

14A. Tumin and E. Reshotko. “Optimal Disturbances in Compressible Boundary Layers”. In: AIAA J. 41 (2003),
pp. 2357–2363.
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Results Optimal disturbances in a Mach 3 flat plate boundary layer

Self-similar vs. full Navier-Stokes solutions
Optimal perturbations are commonly computed from the leading edge,
x0 = 0, using the self-similar base flow solution, which ignores both the
viscous-inviscid interaction near the leading edge and the weak shock wave
emanating from that region
To assess the effects of this simplification, a realistic basic state based on
the Navier-Stokes (NS) equations is used

NS parameters: Rn = 1 µm,
Re′ = 106/m, T0 = 333 K, Tw/Tad = 1

Self-similar vs. NS b.l. profiles
(R =

√
xU/ν)
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R = 100, T̄ /T∞, NS
R = 316, ū/U∞, NS
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Bypass transition in compressible boundary layers 9 / 21



Results Optimal disturbances in a Mach 3 flat plate boundary layer

Effect of initial optimization position, x0
The final optimization position is R1 =

√
x1U/ν = 1000 with x1 = L = 1 m,

which is used as reference length

Optimal gain using NS base flow
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Self-similar vs. NS results

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
G
/R
e L

x0

β = 0.20, NS
β = 0.20, SS
β = 0.25, NS
β = 0.25, SS
β = 0.30, NS
β = 0.30, SS

Optimal β = 0.25 for inflow location at the leading edge
The overall maximum G/ReL is found for x0 = 0.25 and β = 0.30
As expected, the optimal G/ReL results using self-similar and NS base flows agree
for x0 > 0.25, while there is up to 10% deviation for x0 closer to the leading edge
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Results Non-linear development of optimal disturbances

Non-linear evolution of streaks initiated near x0 = 0
R0 =

√
x0U/ν = 20 and β = 0.25

Initial amplitudes defined as A0 =
√

E0 = A/
√

Gmax with Gmax = 2398
Streak amplitude based on u:
Asu(x) = [maxy ,z (ũ(x , y , z))−miny ,z (ũ(x , y , z))] /2

Streak amplitude, Asu
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Results Non-linear development of optimal disturbances

Structure of streaks during non-linear evolution

Streak amplitude, Asu
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Results Non-linear development of optimal disturbances

Non-linear streaks initiated at optimal x0

R0 =
√

x0U/ν = 500 and β = 0.30

Streak amplitude, Asu
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Results Non-linear development of optimal disturbances

Structure of streaks initiated at optimal x0 during
non-linear evolution

Streak amplitude, Asu
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Results Instability analysis of the perturbed BL flow

Instability of streaks initiated at the leading edge
R0 =

√
x0U/ν = 20 and β = 0.25

Spatial PDE based analysis at the final optimization position, R1 = 1000
Two types of shear layer modes become unstable, the sinuous (S) and the
varicose (V) modes

Growth rate, −αi , vs. frequency, ω
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Results Instability analysis of the perturbed BL flow

Amplitude evolution of streak instabilities

R0 =
√

x0U/ν = 20 and β = 0.25
Plane-marching PSE analysis of the sinuous mode
N-factor based on Mack’s energy norm
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Results Bypass transition in a Mach 3 flat plate BL

Natural transition in the unperturbed BL without streaks
Transition prediction based on NE = 9 and 10
Oblique first mode NE computed by linear PSE

N-factors based on E
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Results Bypass transition in a Mach 3 flat plate BL

Bypass transition in a Mach 3 flat plate BL
Transition prediction based on NE = 9 and 10
Sinuous mode NE computed by linear plane-marching PSE

Asu vs. Ê0 = 2/Lz E0
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Ê0 = 2
Lz
E0

First mode, N = 10
First mode, N = 9
R0 = 500, N = 10
R0 = 500, N = 9
R0 = 20, N = 10
R0 = 20, N = 9

R0 = 20: β = 0.25, ω = 0.075− 0.100
R0 = 500: β = 0.30, ω = 0.075− 0.100
Oblique first mode: β = 0.040− 0.045, ω ≈ 0.012

Bypass transition in compressible boundary layers 18 / 21



Summary and Conlusions

Verification of newly developed linear, adjoint-PSE based optimization code
for compressible flows with results from literature.
The effects of the viscous-inviscid interaction near the leading edge and the
weak shock wave produce a 10% deviation from results based on self-similar
base flow when the initial optimization position is located near the leading
edge.
Sinuous mode becomes unstable before the varicose mode for the moderate
amplitude streaks studied.
A non-linear perturbation form of the parabolized Navier-Stokes equations is
demonstrated for the computation of the downstream development of
high-amplitude stationary disturbances.
The optimal initial optimization position for maximum energy also leads to
earlier/stronger growth of secondary instability and, hence, earlier onset of
bypass transition relative to other inflow locations.
Bypass transition via finite-amplitude optimal disturbances is demonstrated
for a zero-pressure-gradient flat plate boundary layer.
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Extra charts

Instability of streaks initiated at the optimal x0
R0 =

√
x0U/ν = 500 and β = 0.30

Spatial PDE based analysis at the final optimization position, R1 = 1000
Two types of shear layer modes become unstable, the sinuous (S) and the
varicose (V) modes

Growth rate, −αi , vs. frequency, ω
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Extra charts

Amplitude evolution of streak instabilities
R0 =

√
x0U/ν = 500 and β = 0.30

Plane-marching PSE analysis of the sinuous mode along x
N-factor based on Mack’s energy norm
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