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Paths to transition!: The rule of transient growth @

@ The non-normality of the NS equations can
give rise to transient energy amplification

Forcing Environmental Disturbances P G tric int tati
g_ it } o, i eometric interpretation
(I)1
Receptivity @,
I .
Transient Growth f
D ——E f <I>2
RN ’
B D
M '
i Bypass
Primary Modes . . . .
— @ Transient growth is a candidate mechanism for
Secondary Mechanisms several cases of bypass transition wherein the
l route to laminar-turbulent transition bypasses
Breakdown the well-known paths to turbulence via modal

instabilities of the underlying laminar basic
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> large bluntness cones,
» spherical forebodies, ...

IM.V. Morkovin, E. Reshotko, and T. Herbert. “Transition in open flow systems - A reassessment”. In: Bull. Am. Phys.
Soc. 39:1882 (1994).
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Large bluntness cones? @
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@ Small blutness: the transition front moves back relative to sharp cone.

@ Large blutness: the transition front moves forward. Why?

2E.C. Marineau et al. Mach 10 boundary-layer transition experiments on sharp and blunted cones. AIAA Paper 2014-3108.

2014,
2/21
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Motivation

Spherical forebodies: the blunt body paradox®:* @/

Re = 3.0E6/ft Re = 3.9E6/ft Re = 5.0E6/ft
hhy,
20
15
1.0
Re = 5.8E6/ft Re = 6.6E6/ft Re = 7.5E6/ft
P N
7 05
00

Figure 14. CEV Global Heating Distribution from Test 6944, o = 28-deg, 8-in. diam. model

@ Transition observed while the flow is T-S stable, Gortler stable (convex
curvature) and crossflow is negligible. Why?

2Note that images for Re=5.0E6/ft and Re=5.8E6/ft are interchanged.

3E. Reshotko and A. Tumin. “The blunt body paradox - A case for transient growth”. In: Proc. of the IUTAM
Laminar-Turbulent Symposium V. ed. by H. Fasel and W. Saric. Sedona, AZ, USA, 2000, p. 403.

4B.R. Hollis. Blunt-body entry vhicle aerothermodynamics: transition and turbulence on the CEV and MSL configurations.
AIAA Paper 2010-4984. 2010.
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Can TG theory explain transition in these cases?’ @

@ Reshotko and Tumin® suggested transient growth as a possible explanation
for transition over blunt nose tips and showed that a transition criterion
based on linear optimal growth provided successful correlation with the
PANT database (M < 6).

@ Recent data® corresponds to higher Mach numbers (M > 6).

Current ongoing work:

@ supersonic and hypersonic Mach numbers

@ nonlinear effects (nonlinear streak development, streak instabilities, interaction
with boundary layer instabilities, ...)

@ spatial approach including non-parallel effects

@ realistic geometries

5E. Reshotko and A. Tumin. “Role of Transient Growth in Roughness-Induced Transition”. In: AIAA J. 42 (2004),
pp. 766-770.

SE.C. Marineau et al. Mach 10 boundary-layer transition experiments on sharp and blunted cones. AIAA Paper 2014-3108
2014.

7P. Paredes et al. Transient growth analysis of compressible boundary layers with parabolized stability equations. (Submitted
to SciTech 2016). 2016.
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Zero-pressure-gradient flat plate BL at Mach 3 @

@ Linear optimal disturbances

» Verification against prior results using self-similar base flow solution
» Extension to N-S base flow solution including leading edge shock

@ Non-linear evolution of finite-amplitude linearly optimal disturbances
@ Instability analysis of the perturbed flow

@ Examples of supersonic/hypersonic vehicles with flat plate components:

8http://www.wpafb.af.mil /news/story.asp?id=123346970

9http://www.nasa.gov/missions/research/x43—main.html
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Transient growth analysis using PSE!? @

@ The optimal initial disturbance, q, is defined as the inflow condition at xg
that leads to maximum energy amplification or gain, G, up to a specified
position, xi.

_ E(x)

T E(x)”

@ Mack’s energy norm: E(€) = [, @(x)"Mé(x)dQ, with

@ Objective function: J(ﬁ) =G

~diae | L) o p(x)
M = diag W,P(X)ap(x)vp(x)»m

@ Variational formulation using direct and adjoint PSE,

where @* denotes the vector of adjoint disturbance variables.

@ The PSE approach allows the analysis of a broader class of mean flows
including those based on NS solvers.

10 0. Pralits et al. “Optimal disturbances in three-dimensional boundary-layer flows”. [n: Ercoftac Bull. 74 (2007),
pp. 23-31.
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Non-linear development of optimal perturbations @

@ The linearly optimal disturbance is used as inflow condition with finite
amplitude.

@ The nonlinear-perturbation form of the parabolized Navier-Stokes equations
are used, which is equivalent to the nonlinear plane-marching PSE*! for a
single stationary perturbation (N =0, ag = 0):

N

a(x,y,z,t) = Z An(x,y,z)exp [i/an(xl)dx' —inwtl|,

n=—N X
@ An implicit marching technique is used to facilitate the computation of
nonlinear streaks with large amplitudes.

@ The instability of the resulting modified boundary layer flow is investigated
by the linear form of the plane-marching PSE'2.

1P Paredes et al. “The nonlinear PSE-3D concept for transition prediction in flows with a single slowly-varying spatial
direction”. In: Procedia IUTAM 14C (2015), pp. 35-44.

12p_ Paredes. “Advances in global instability computations: from incompressible to hypersonic flow”. PhD thesis.
Universidad Politécnica de Madrid, 2014.
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Verification: Optimal gain vs. spanwise wavenumber13’1®/

@ Compressible, self-similar, flat plate boundary layer
@ Re; = 108 to enable comparison with asymptotic optimal growth results
based on boundary layer equations
@ M=3 Tp=333K
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13p. Andersson, M. Berggren, and D.S. Henningson. "Optimal disturbances and bypass transition in boundary layers”. In

Phys. Fluids 11 (1999), pp. 134-150.
A. Tumin and E. Reshotko. “Optimal Disturbances in Compressible Boundary Layers”. In: AIAA J. 41 (2003),
pp. 2357-2363.
8 /21
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Optimal disturbances in a Mach 3 flat plate boundary layer
Self-similar vs. full Navier-Stokes solutions @

@ Optimal perturbations are commonly computed from the leading edge,
xp = 0, using the self-similar base flow solution, which ignores both the
viscous-inviscid interaction near the leading edge and the weak shock wave
emanating from that region

@ To assess the effects of this simplification, a realistic basic state based on
the Navier-Stokes (NS) equations is used

@ NS parameters: R, =1 um, @ Self-similar vs. NS b.l. profiles
Re’ =10°/m, To =333 K, Tyw/Ta =1 (R=+/xU/v)
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REHIE  Optimal disturbances in a Mach 3 flat plate boundary layer

Effect of initial optimization position, X @

@ The final optimization position is Ry = y/x1U/v = 1000 with x; = L =1 m,
which is used as reference length

@ Optimal gain using NS base flow @ Self-similar vs. NS results
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@ Optimal 8 = 0.25 for inflow location at the leading edge

@ The overall maximum G/Re, is found for xo = 0.25 and 8 = 0.30

@ As expected, the optimal G/Re, results using self-similar and NS base flows agree
for xop > 0.25, while there is up to 10% deviation for xq closer to the leading edge

10 / 21
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Non-linear evolution of streaks initiated near x; = 0 @
@ Ry =+/xU/v=20and 3=0.25
@ Initial amplitudes defined as Ag = By = A/\/Gmax With Gpax = 2398
@ Streak amplitude based on u:
As,(x) = [max, ,(@(x, y, z)) — min, ,(i(x, y, z))] /2

@ Streak amplitude, As, @ Energy gain, G = E/Ey
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Structure of streaks during non-linear evolution

@ Streak amplitude, As,
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Non-linear development of optimal disturbances
Non-linear streaks initiated at optimal xp @

® Ry=+/xoU/v =500 and 3 = 0.30

@ Streak amplitude, As, @ Streak amplitude, As,, for xop — 0
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Structure of streaks initiated at optimal xg during
non-linear evolution

As,

@ Streak amplitude, As, @ A=3 @ A=10
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Instability of streaks initiated at the leading edge @
()] Ro = \/XOU/V =20 and ﬂ =0.25
@ Spatial PDE based analysis at the final optimization position, R; = 1000

@ Two types of shear layer modes become unstable, the sinuous (S) and the
varicose (V) modes
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Instability analysis of the perturbed BL flow
Amplitude evolution of streak instabilities @

o Ro = \/X()U/l/ =20 and 6 =0.25
@ Plane-marching PSE analysis of the sinuous mode

@ N-factor based on Mack’s energy norm

@ A=3
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Bypass transition in a Mach 3 flat plate BL
Natural transition in the unperturbed BL without streal«@

@ Transition prediction based on Ng =9 and 10
@ Oblique first mode Ng computed by linear PSE

o . 2
@ N-factors based on E @ Transition location, Rex = R
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@ N =10: Re, = 1.0417 x 107, 8 = 0.040, w = 0.012
@ N=09: Re, =8.3625 x 10°, 8 = 0.045, w ~ 0.012
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Bypass transition in a Mach 3 flat plate BL

@ Transition prediction based on Ng =9 and 10

@ Sinuous mode Ng computed by linear plane-marching PSE

@ As,vs. By =2/1,E
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Summary and Conlusions

&

@ Verification of newly developed linear, adjoint-PSE based optimization code
for compressible flows with results from literature.

@ The effects of the viscous-inviscid interaction near the leading edge and the
weak shock wave produce a 10% deviation from results based on self-similar
base flow when the initial optimization position is located near the leading
edge.

@ Sinuous mode becomes unstable before the varicose mode for the moderate
amplitude streaks studied.

@ A non-linear perturbation form of the parabolized Navier-Stokes equations is
demonstrated for the computation of the downstream development of
high-amplitude stationary disturbances.

@ The optimal initial optimization position for maximum energy also leads to
earlier/stronger growth of secondary instability and, hence, earlier onset of
bypass transition relative to other inflow locations.

@ Bypass transition via finite-amplitude optimal disturbances is demonstrated
for a zero-pressure-gradient flat plate boundary layer.
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Extra charts

Instability of streaks initiated at the optimal xp @
® Ry = /xoU/v =500 and 3 = 0.30
@ Spatial PDE based analysis at the final optimization position, R; = 1000

@ Two types of shear layer modes become unstable, the sinuous (S) and the
varicose (V) modes

@ Sinuous, @ Varicose,
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Amplitude evolution of streak instabilities @
@ Ry =+/xU/v =500 and g =0.30

@ Plane-marching PSE analysis of the sinuous mode along x

@ N-factor based on Mack’s energy norm

@ A=27 @ A=4
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