Stratospheric Aerosol and Gas Experiment
SAGE III on ISS
An Earth Science Mission on the International Space Station

Schedule Risk Analysis
A Project Perspective

Lauren Bonine, Project Risk Manager
NASA Langley Research Center
5 N Dryden Street, Hampton, VA 23681-2199 (MS 416)
lauren.bonine@nasa.gov
(757) 864-5634
Introduction

Project Overview

Schedule Risk Analysis Process

Continuous Risk Management Process

Risk Model and Inputs

Results and Response

Lessons Learned

Next Steps
The SAGE III on ISS Project uses schedule risk analysis products to support informed decision making

Today’s Presentation Focus:

• Inputs used to capture a complete project risk profile
• Implementation of active schedule management
• Method of monitoring project schedule reserve, and communication of project progress to stakeholders
SAGE III on ISS Project Overview

- Space Flight Project managed and led by NASA Langley Research Center
- Partnered with the ISS Program for an instrument pointing system developed under the European Space Agency by Thales Alenia Space Italia
- Planned for launch on SpaceX to the ISS in 2016
Third generation in a family of instruments

Study aerosols, ozone and other trace gases in Earth’s upper atmosphere

Supports NASA Strategic Goals

- Extend and sustain human activities across the solar system
- Expand scientific understanding of the Earth and the universe in which we live
SAGE III on ISS Flight Hardware

SAGE III on ISS consists of two payloads:

- **Sensor Assembly (SA)**
- **Hexapod Mechanical Assembly (HMA)**
- **Contamination Monitoring Package (CMP)**
- **Disturbance Monitoring Package (DMP)**
- **Instrument Control Electronics (ICE)**
- **Hexapod Electronics Unit (HEU)**
- **Contamination Monitoring Package (CMP)**
- **Interface Adapter Module (IAM)**
- **ExPRESS Payload Adapter (ExPA)**

Instrument Payload (IP)

Nadir Viewing Platform (NVP)
Current Project Status

SAGE III on ISS
Stratospheric Aerosol and Gas Experiment

Status Date: July 8, 2015

<table>
<thead>
<tr>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
<th>Phase D</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDP A</td>
<td>KDP B</td>
<td>KDP C</td>
<td>KDP D</td>
</tr>
<tr>
<td>MCR</td>
<td>PDR</td>
<td>CDR</td>
<td>KDP E</td>
</tr>
<tr>
<td>8/11</td>
<td>12/11</td>
<td>5/12</td>
<td>5/15</td>
</tr>
<tr>
<td>Phase 0/1 Safety Review</td>
<td>Phase 1 Safety Review</td>
<td>Phase 2 Safety Review</td>
<td>Phase 3 Safety Review</td>
</tr>
<tr>
<td>4/12</td>
<td>4/12</td>
<td>6/13</td>
<td>6/13</td>
</tr>
<tr>
<td>SRR Checkpoint</td>
<td>JIP Signed</td>
<td>Life Extension Report-out</td>
<td>Instrument Ready for Integration</td>
</tr>
<tr>
<td>PDR</td>
<td>CDR</td>
<td>PER</td>
<td>HEU Ready</td>
</tr>
<tr>
<td>SRR</td>
<td>PDR</td>
<td>CDR</td>
<td>Hexapod Delivery</td>
</tr>
<tr>
<td>SRR</td>
<td>CDR</td>
<td>System Acceptance</td>
<td>Ready for Testing w/IAM</td>
</tr>
<tr>
<td>5.1 SAGE III Experiment Pallet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1 SAGE Instrument &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.2 Hexapod & GSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.3 IAM & GSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.4 CMP & GSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.5 DMP & GSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.6 Pallet, Mission Unique Brackets, & Cable Harnesses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Nadir Viewing Platform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 GSE & Simulators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0 Ground Systems/Mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0 Integration & Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Currently in Phase D

Instrument Payload in Thermal Vacuum Testing

Nadir Viewing Platform Delivered to Launch Site
Schedule Risk Analysis Process

Project Continuous Risk Management Process

- Control
- Identify
- Track
- Plan
- Analyze

Standing Review Board Activities

- Perform Independent Evaluation and Re-assessment of Project Discrete Risks
- Develop Recommendations as part of Project Review or KDP Evaluation

Project Activities

- Finalize Risk Inputs for Analysis
- Perform Schedule Audit, Prepare IMS for Analysis
- Develop Schedule & Risk Model and Run Project Analysis
- Evaluate & Interpret Results and Prepare Reports

SRB Analysis

- Update Schedule & Risk Model and Run SRB Analysis
- Evaluate & Interpret Results and Prepare Reports

Active Schedule Management

- Schedule Mitigation
- Schedule Contingency
- Schedule Recovery
- Schedule Monitoring
Implemented at Top Project and subsystem levels

Subsystem leads and subject matter experts are the primary source of risk identification and analysis inputs

The RMB oversees the CRM process, makes decisions and allocates resources for risk management activities
Project Analysis Tools

- Integrated Master Schedule: Microsoft Project
- Project Risk Register: Microsoft Excel
- Analysis Software: Palisade @Risk
Methodology

- Monte Carlo simulations of project schedule
- Estimates were provided by project SME’s as part of developing the Project Management Baseline and Continuous Risk Management process

Project risk model included

- Task Duration Uncertainty
- Discrete Risks
 - Top Project Risks
 - Subsystem Risks
- Generic Risks
 - Additional discrete risks inherent in the activities being performed that were not typically captured in the project risk register
Accounts for uncertainty in task duration estimates

- Estimate the minimum, most likely, and maximum duration estimates
Discrete Risks

- Account for potential for impacts to the project schedule
 - Estimate the probability of a risk event occurrence
 - Estimate the minimum, most likely, and maximum schedule impact of the risk

- Use of distributions
 - Triangular
 - PERT
Project identified Generic Risks, or risks common to the development of any spaceflight project

- Generic risks were not initially captured as part of the CRM process

Sample Generic Risks

- Test Anomalies
- Facility Down-time/Availability
- Center Closures (Wx)
- GSE Development
- Additional Software Builds

Inclusion of generic risks was necessary for more realistic model results

Other areas for future consideration

- Procurement Delays
- Logistics Coordination
- Workmanship issues
- Additional Software Builds
Progressing Towards KDP-D

Risk Model (70%) 62 days
Actual Reserve 38 days
Center Guidance 28 days
Indicated a need for significantly more schedule reserve than available at the time
- Later than planned subsystem deliveries
- Fixed launch date

Based on model results, the project took action to increase schedule reserve
- Update Project plan to utilize two shifts Monday through Friday and single shift on Saturdays

Required active schedule management approach to meet delivery commitments
Active Schedule Management

- **Schedule Mitigation**
 - Added an overlapping shift team for more bench strength
 - Added additional workforce and support personnel

- **Schedule Contingency**
 - Coordinated authorization of work during Center closures
 - Identified compressible or descopable tasks which could buy back schedule reserve

- **Schedule Recovery**
 - Worked additional unplanned shifts to recover schedule
 - Re-plan near term schedule tasks to maintain effective progress when issues arise

- **Schedule Monitoring**
 - Actively monitored schedule reserve available against schedule reserve needed
Project reserve posture exceeded Center guidance (2 months/year during AI&T)

- Linear reserve burn down was not appropriate because of high risk tests late in the schedule

Project Solution

- Develop a methodology to understand the amount of reserve required at each major integration and test activity
- Inform decisions regarding use of schedule reserve

Schedule Monitoring
Risk Informed Reserve Burn Down
Risk Informed Reserve Burn Down Methodology

- Sum the mean observed impact of all risks adjusting for parallel risk impacts
- Determine the scale factor of the mean observed impact to the reserve required at 70%
- Scale mean observed impacts at each major integration activity by the 70% scale factor to determine the estimated reserve required for each activity
Benefits

- Provides an estimate of reserve to be maintained as the project executed integration and testing activities
- Informs decisions
 - Adding shifts or adjust staffing plans
 - Descope or compress downward tasks
 - Considered as part of risk trade for tactical decisions
 - Capitalize on opportunities
- Serves as a management baseline to assess progress
- Excellent communication tool for project stakeholders
Challenges

Scaling reserve requirements to 70% level was particularly challenging when iterating analysis over time

• Reserve does not scale consistently from one analysis to the next on a progressing schedule with multiple paths
• Risks not closed as planned needed to be carried forward causing downward reserve requirements to be adjusted

Initial rollout – new view of reserve burn down for project stakeholders
• Stakeholder reception has been positive
Lessons Learned

- Discrete risks managed as part of the CRM process did not provide a complete story for potential project schedule risk
- Risk informed reserve Burn down was a good management tool to aid in decision making
- Center guidelines for schedule reserve may not adequately support project needs
Next Steps

- Refine schedule reserve burn down methodology
- Document execution of significant common Flight Project tasks such as environmental tests
 - Scope of task
 - Planned vs. actual task duration (and reason for variances)
- Document issues experienced resulting in schedule reserve use or other schedule impacts
 - Aid future project planning and risk management
 - Improve future risk models
- Potential area for CADRe or other systematic data capture
Questions?