Atmospheric CO₂ Variability Observed from ASCENDS Flight Campaigns

Bing Lin, Edward Browell², Joel Campbell¹, Yonghoon Choi¹, Jeremy Dobler¹, Tai-Fang Fan³, F. Wallace Harrison¹, Susan Kooi¹, Zhaoyan Liu¹, Byron Meadows¹, Amin Nehrir¹, Michael Obland¹, Jim Plant¹, Melissa Yang¹

¹NASA Langley Research Center, ²NASA Langley Research Center STARSS II Affiliate, ³Science System and Application, Inc, ⁴Harris Corp.

Introduction

- Atmospheric CO₂ is the major climate forcing for the changing climate. Its concentration (or volume mixing ratio XCO₂) has significantly increased from about 280 ppm in pre-industrial times (~350 ppm at present).
- There is a lack of quantitative knowledge of atmospheric CO₂ variability in various spatial-temporal scales. A large part of carbon assimilated within the Earth’s carbon cycle cannot be accounted for even in observed global annual means.

Lidar and In-Situ CO₂ Measurements

- U.S. National Research Council has identified the need of a NASA Active Sensing of CO₂ Emissions during Nighttime, Days, and Sonsum (ASCENDS) mission for improved determination of atmospheric carbon sources and sinks. NASA Langley Research Center (LaRC) and Harris Corp are jointly assessing the space measurement capability using airborne CO₂ laser absorption (3.94 μm).
- The CO₂ lidars are intensity-modulated continuous-wave (IMCW) multi-channel signal modulators operating on a CO₂ absorption line in the 1.27-μm band with both on-line and off-line wavelengths. A total of 14 flight campaigns have been conducted with lidar and in-situ CO₂ measurement systems.
- This effort analyzes the measurements of atmospheric CO₂ from the lidar and in-situ instruments during recent flight campaigns. Significant atmospheric CO₂ variations on various spatiotemporal scales were observed during these campaigns. Discussed cases include CO₂ drawdown by wildfires, large CO₂ variations within small regions, interannual variability during the growing season and biologically dormant season, and urban impacts on CO₂ distributions.
- Lidar remotely sensed CO₂ column values are also evaluated under both clear and cloudy conditions and within atmospheric boundary layer and above clouded areas.

Measurement Characteristics

- **Multifunctional Fiber Laser Lidar (MFLL):**
 - Laser power: 5 W
 - Telescope diameter: 629.3 mm
 - Detector dark current (cryogenic cooling): 45 pA
 - Sampling rate: 2 MHz
 - Signal integration time: 0.1 s
 - Modulation scheme: swept sine with 50-km unambiguous range
 - Normalization and calibration: same as MFLL

- **In-Situ Sensor (AVOCET):**
 - Atmospheric CO₂: XCO₂
 - Meteorological CO₂: Tpp/q and winds

Lidar CO₂ Retrieval

- Integrated path differential absorption
 \[r = \ln \frac{C(t) - C(0)}{C(t) - C(0)} \]
 (online: on) and (offline: off)

- CO₂ volume mixing ratio (XCO₂) in situ atmospheric state profile: XCO₂, Tpp/q

DAOS calculations based on radiative transfer model: XCO₂ calculated from observed DAOS and meteorological state measurements.

Observed CO₂ measurements

Airborne Flight Campaigns

2011 Summer: 29 July – 11 August

2013 Winter: 18 Feb – 5 March

2014 Summer: 14 Aug – 2 Sept

Vertical profiles: CA

CO₂ concentration (2 Feb 2013)

Regional CO₂ changes

- Column CO₂ measurements over Midwest farmland showed much larger drawdown signal in 2011 (~8 ppm) compared with measurements in 2013 (~3 ppm)
- Resulting differences in meteorological states and phases of growing season
- Certain variability due to inter-annual changes in meteorological and biological conditions

Contact Information

NASA Langley Research Center
NASA Langley Research Center
NASA Langley Research Center
Science System and Application Inc
Harris Corp

Methodology for validation

- **Flight: 20140827**
- **In-situ derived (or modeled): Value**
 - In-situ from Spiral: CO₂ Tpp/q profiles
 - Radiative transfer model
 - Range correction with lidar range data
 - In-situ derived (or modeled): DAOD
 - In-situ derived (or modeled): XCO₂

Future Work

- Applying CO₂ variability from ACT-America mission data
- Evaluating of large-scale CO₂ variability utilizing colocated airborne and OCO-2 CO₂ measurements
- Understanding multi-scale integration to insights of the driving forces of CO₂ changes

Acknowledgement: This research team would like to thank NASA Earth Science Division and Langley Research Center for their support of data analyses and flight campaigns.

References

