NAIROS Model

- NASA Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRS) Model
 - Prototype operational model
 - Running in real-time at the NASA Langley Research Center since April 2011
- Distinguishing Features
 - Real-time physics-based, deterministic, global model
 - Real-time inclusion of both galactic cosmic radiation (GCR) and solar energetic particle (SEP) radiation
 - Real-time solar-magnetospheric effects on geosphere radiation environment
 - Real-time meteorological data (NCEP/GFS)

Public Web site: http://nairex.spaceenvironment.net/ or google NAIROS

Upper/Left: Climatology of zonal-average GCR effective (full-body average) dose rates at various altitudes and flight levels (FL)
- Solar Minimum (solid green line); Solar Maximum (solid blue line)
- The dashed lines: +/- 1-standard deviation

Upper/Right: Climatology of GCR effective dose rates as a function of vertical geomagnetic cutoff rigidity at various altitudes and flight levels (FL). Line style/color same as upper/left figure

Bone

RaD-X Science

Goals and Objectives

- **Goal 1**: Improve NAIROS model by characterizing energy deposition of cosmic ray primary (CR) particles
 - **Objective 1**: Measure dosimetric quantities in the upper atmosphere above the Pfozter maximum to isolate CR primaries
 - **Objective 2**: Utilize dosimeters that can isolate proton and heavy-ion CR primaries and atmospheric neutrons
- **Goal 2**: Identify low-cost atmospheric radiation dose measurement solutions for global, continuous monitoring
- **Objective 3**: Characterize the relationship between silicon-based dosimetric measurements and radiobiological response

High-Altitude Measurements

Taking data at high altitude above the Pfozter maximum provides a direct measurement of CR primaries, permitting the separation of discrepancies due to source uncertainties from discrepancies caused by the ensemble of complex physical processes at aircraft flight altitudes

- The radiation environment in the upper atmosphere above the Pfozter maximum is a large source of uncertainty for radiation exposure at aircraft flight altitudes (Lindborg et al., 2004)
- Model/measurement comparisons at aircraft altitudes point out discrepancies, but do little to reveal a causal source of discrepancy due to variation in composition and energy of the radiation environment with atmospheric depth

Instrument Selection

The choice of dosimeters was motivated by:
- Ability to separate CR primary protons and heavy-ions and atmospheric neutrons by combining measurements at two float altitude regions (Region-A and Region-B shown below)
- Viable low-cost dosimeters for continuous, global monitoring of radiobiological response (direct measurement or empirical fit)

- **TEPC**: Industry standard microdosimeter provides radiation protection (operational) dose measurement, which is defined as ambient dose equivalent [ICRU, 2010; ISO, 2012].
- **Liulin**: Silicon-based LET spectrometer that permits identification of protons at Region-A and separation of heavy-ion contributions at Region-B.
- **TID**: Teledyne total ionizing dose (TID) detector that is mostly sensitive to charged particles at Rad-X altitudes. Viable silicon-based dosimeter for continuous, global radiation monitoring. Requires empirical fit to TEPC ambient dose equivalent to characterize radiobiological response.
- **RaySure**: Viable silicon-based microdosimeter "emulator" which is easy to manufacture; internal calibration directly computes ambient dose equivalent.

POC: Christopher.J.Mertens@nasa.gov

Mission and Instrument Parameters

- **Platform**: High-Altitude Balloon
- **Launch Site**: Fort Sumner, NM
- **Mission Duration**: 24-hours
- **Temporal Sampling**: 1-5 minutes
- **Launch Readiness Date**: September 2015
- **Instruments**: (1) TEPC, (2) Teledyne TID dosimeter, (3) Liulin LET Spectrometer, and (4) RaySure microdosimeter emulator
- **Measurement Uncertainty**: < 30%
- **Instrument TRL**: All components TRL 6 or higher

Science Payload and Gondola

Science Systems and Applications, 1

- POC: Christopher.J.Mertens@nasa.gov

Milestones and Science Activities

- **Project Milestones**
 - Selection Conference (08/20/2013)
 - Kickoff (10/31/2013)
 - SRR: Systems Requirements Review (02/19/2014)
- **Near-Term Science Activities**
 - Modeling instrument and radiation shielding environment (05/2014)
 - PDR: Preliminary Design Review (05/2014)
 - Dosimeter Beam Test and Calibration (08/2014)