Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

Christopher J. Mertens\(^1\), Erica J. Alston\(^1\), Tore Straume\(^2\), Brad Gersey\(^3\), Terry C. Lusby\(^2\), Ryan B. Norman\(^1\), Guillaume P. Gronoff\(^4\), W. Kent Tobiska\(^5\), and Rick Wilkins\(^3\)

\(^1\)NASA Langley Research Center, \(^2\)NASA Ames Research Center, \(^3\)Prairie View A& M University, \(^4\)Science Systems and Applications, \(^5\)Space Environment Research Technologies

NAIRAS Model
- NASA Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) Model
 - Prototype operational model
 - Running in real-time at the NASA Langley Research Center since April 2011

Distinguishing Features
- Real-time physics-based, deterministic, global model
- Real-time inclusion of both galactic cosmic radiation (GCR) and solar energetic particle (SEP) radiation
- Real-time solar-magneto-spheric effects on geospace radiation environment
- Real-time meteorological data (NCEP/GFS)

Upper/Left: Climatology of zonal-average GCR effective (full-body average) dose rates at various altitudes and flight levels (FL)
 - Solar Minimum (solid green line); Solar Maximum (solid blue line)
 - The dashed lines: +/- 1-standard deviation

Upper/Right: Climatology of GCR effective dose rates as a function of vertical geomagnetic cutoff rigidity at various altitudes and flight levels (FL). Line style/color same as upper/left figure

Adjacent Figure: Dosimetric flight measurements from Dusseldorf, Germany (DUS) to Mauritius (MRU) on 13-14 February 2008 (courtesy of Matthias Meier, DLR)
- 1 min TEPC ambient dose equivalent rate [uGy/hr, red line]
- Ambient dose equivalent operational surrogate for effective dose
- 1 min TEPC tissue absorbed dose rate [uSy/hr, blue line]
- 1 min Liulin silicon absorbed dose rate [uSy/hr, green line]

Upper/Left: TEPC/NAIRAS comparisons of 1-hour averaged silicon absorbed dose rates for DUS-MRU 13-14 February 2008 flight
- NAIRAS underestimates TEPC by about 50%
- These results consistent with comparisons with ICRU Report 84 reference aircraft measurements (Mertens et al., 2013)

Upper/Right: Liulin/NAIRAS comparisons of 1-hour averaged silicon absorbed dose rates for DUS-MRU 13-14 February 2008 flight
- NAIRAS underestimates Liulin by about 70%

Conclusions
- Suggest largest NAIRAS uncertainty in charged particle source/transport/interactions
- Measurements at flight altitudes alone cannot unambiguously identify source of NAIRAS model uncertainty

RaD-X Science

Goals and Objectives
- **Goal 1:** Improve NAIRAS model by characterizing energy deposition of cosmic ray primary (CR) particles
 - **Objective 1:** Measure dosimetric quantities in the upper atmosphere above the Pfotzer maximum to isolate CR primaries
 - **Objective 2:** Utilize dosimeters that can isolate proton and heavy-ion CR primaries and atmospheric neutrons
- **Goal 2:** Identify low-cost atmospheric radiation dose measurement solutions for global, continuous monitoring
 - **Objective 3:** Characterize the relationship between silicon-based dosimetric measurements and radiobiological response

High-Altitude Measurements
Taking data at high altitude above the Pfotzer maximum provides a direct measurement of CR primaries, permitting the separation of discrepancies due to source uncertainties from discrepancies caused by the ensemble of complex physical processes at aircraft flight altitudes

Instrument Selection

The choice of dosimeters was motivated by:
- Ability to separate CR primary protons and heavy-ions and atmospheric neutrons by combining measurements at two float altitude regions (Region-A and Region-B shown below)
- Viable low-cost dosimeters for continuous, global monitoring of radiobiological response (direct measurement or empirical fit)

TEPC: Industry standard microdosimeter provides radiation protection (operational) dose measurement, which is defined as ambient dose equivalent [ICRU, 2010; ISO, 2012]

Liulin: Silicon-based LET spectrometer that permits identification of protons at Region-A and separation of heavy-ion contributions at Region-B

TID: Teledyne total ionizing dose (TID) detector that is mostly sensitive to charged particles at RaD-X altitudes. Viable silicon-based dosimeter for continuous, global radiation monitoring. Requires empirical fit to TEPC ambient dose equivalent to characterize radiobiological response.

RaySure: Viable silicon-based microdosimeter “emulator” which is easy to manufacture, internal calibration directly computes ambient dose equivalent.

POC: Christopher.J.Mertens@nasa.gov

RaD-X Mission

Mission and Instrument Parameters
- **Platform:** High- Altitude Balloon
- **Launch Site:** Fort Sumner, NM
- **Mission Duration:** 24-hours
- **Temporal Sampling:** 1-5 minutes
- **Launch Readiness Date:** September 2015
- **Instruments:** (1) TEPC, (2) Teledyne TID dosimeter, (3) Liulin LET Spectrometer, and (4) RaySure microdosimeter emulator
- **Measurement Uncertainty:** < 30%
- **Instrument TRL:** All components TRL 6 or higher

Concept of Operation

Science Payload and Gondola

Milestones and Science Activities
- **Project Milestones**
 - Selection Conference (08/20/2013)
 - Kickoff (01/31/2013)
 - SRR: Systems Requirements Review (02/19/2014)
- **Near-Term Science Activities**
 - Modeling instrument and radiation shielding environment (05/2014)
 - PDR: Preliminary Design Review (05/2014)
 - Dosimeter Beam Test and Calibration (08/2014)