GCR Simulator Development Status at the NASA Space Radiation Laboratory

T.C. Slaba, J.W. Norbury, S.R. Blattnig

NASA Langley Research Center, Hampton, VA

Solar Energetic Particles, Solar Modulation and Space Radiation:
New Opportunities in the AMS-02 ERA
October 18-23, 2015
Honolulu, Hawaii, USA
Outline

- Brief overview

- Reference field specification
 - External (free space) vs. internal (shielded tissue) environments

- General beam selection strategy

- Discussion and summary

Note: Most of the content described in this presentation can be found in:

Full reference list and citations for models used can also be found in the document (not included here)
Overview

• Long term exposure to GCR presents a serious health risk to astronauts
 - Large uncertainties connected to the biological response
 - Main goal of the NASA/HRP radiobiology experimental research program is to mitigate the risk through uncertainty reduction and countermeasure development

• Radiobiology experiments are performed to reduce uncertainties and understand basic mechanisms for carcinogenesis, CNS and cardiovascular effects
 - Most experiments have been performed with individual ion species and/or energies
 - Approach is guided in part by desire to understand basic mechanisms
 - Heavily influenced by facility constraints and cost

• GCR environment is a broad spectrum of particles and energies
 - Difficult to provide in a laboratory

• NSRL has matured to a point where simulating a “broad” spectrum of particles and energies in a single experiment is feasible from a facility and cost perspective
 - Still can’t simulate full GCR spectrum in one experiment but can do better than a single particle and energy (e.g. 56Fe at 1 GeV/n)
Overview

• The “GCR simulator” is not intended to take the place of single beam studies
 - Single beam studies are needed to examine and improve understanding of basic mechanisms
 - Also needed to test, develop, and validate theoretical and computational models
 - Developing use-cases for GCR simulator through ongoing community discussions

• The GCR simulator should be viewed as a new and enabling technology that enhances current capabilities
 - Provides opportunity to test models derived from single beam studies in more realistic scenario
 - Improves operational efficiency of NSRL, which in turn, improves efficiency for single beam studies

• The notion of a GCR simulator is not new
 - It has been discussed for decades, and was always a goal of the space radiobiology program
 - The accelerator facility has now matured to a point where implementation is realistic
Overview

• The GCR simulator is intended to deliver deep space, shielded tissue environment to biological targets in a laboratory setting
 - Used to study a range of space radiobiology questions
 - Provides a more realistic scenario for countermeasure development and testing

• Many of the details associated with GCR simulator design will depend on biological question and endpoints being studied

• Some aspects may be “standardized” across experiments
 - Saves time and cost
 - Enables subsequent cross comparisons and validation
 - “Standard” conditions do not have to be universally applied if investigators have a good scientific rationale for deviation

• Two aspects allow for some standardization
 - Reference field specification: which environment are we simulating?
 - General beam selection strategy: how can we pick beams to do the simulation?
External and Internal Fields

- The external field is modified as it passes through shielding and tissue
 - Slowing down due to atomic processes
 - Attenuation and breakup of heavy ions due to nuclear collisions
 - Secondary particle production

Selected particle spectra in free space (left pane) and behind 5 g/cm² of aluminum and 30 g/cm² of water (right pane) during solar minimum.
An important question is whether to design the simulator using the free space, external field or local tissue field.
External and Internal Fields

• **External field approach**

 Beams selected to represent external, free space field before shielding

 Beams selected to represent external, free space field before shielding

• **Local tissue field approach**

 Beams selected to directly represent shielded tissue field
External and Internal Fields

- Facility constraints have a significant impact on simulator design
 - Current NSRL limits: protons (2.5 GeV) and heavier ions (1.0 GeV/n)
 - Upgrade: protons (4.0 GeV) and heavier ions (1.5 GeV/n)

<table>
<thead>
<tr>
<th>Energy cutoff description</th>
<th>Free space approach</th>
<th>Local field approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current NSRL energy constraints</td>
<td>47%</td>
<td>88%</td>
</tr>
<tr>
<td>Upgrade NSRL energy constraints</td>
<td>63%</td>
<td>91%</td>
</tr>
</tbody>
</table>

- Results for female phantom behind 20 g/cm² of aluminum shielding during solar minimum
- Other scenarios and exposure quantities lead to qualitatively similar results
External and Internal Fields

• Results indicate that energy constraints at NSRL limit the feasibility of simulating the external, free space GCR field
 - Missing ~half of the exposure

• Preliminary GCR simulator design will focus on reproducing the shielded tissue field

Local tissue field approach

Beams selected to directly represent shielded tissue field

Beam

Biological target
Reference Field Specification

• Shielded tissue field in space depends on many factors
 - Tissue location within body
 - Shielding material, thickness, and geometry
 - Solar activity

• Looked at variation associated with each of these factors
 - A single reference field for deep space can be defined

• Observed variation is likely within
 - GCR environmental model uncertainty (at least 20%)
 - Combined physics and transport modelling uncertainty
 - Experimental design uncertainty: representing broad GCR spectrum with relatively few mono-energetic beams
Reference Field Specification

• Variation in local tissue field was examined as a function of
 - Tissue location, shielding configuration, shielding material, solar activity

• Realistic vehicle shielding and simplified spherical shielding was considered
 - Habitat demonstration unit (HDU) adapted for 1-year free space mission
 - Cislunar vehicle concept
 - ISS location in US Lab near overhead racks
 - STS location in mid-deck (often referred to as DLOC 2)
Reference Field Specification

- Tissue exposure values vary by less than 20% behind a range of shielding configurations
 - Variation is within even the GCR environmental model uncertainty (~±20%)
 - Increased variation in dose equivalent associated with HZE breakup
 - Blood forming organ (BFO), bladder, and breast appear as representative tissues
 - 20 g/cm² aluminum appears as representative shielding
Reference Field Specification

- LET spectra show little variation across tissue locations and shielding configurations
 - Spectra appear as qualitatively similar
 - Variation below 200 keV/µm is likely within experimental design uncertainty
 - Variation above 200 keV/µm makes negligible contributions to exposure
Main difference in LET spectra between solar extremes is overall magnitude
- Multiplied solar maximum results by 1.85
- Constant factor nearly corrects discrepancies across the entire LET domain
- Solar activity does not qualitatively change the shape of the LET spectrum
Reference Field Specification

- Reference field specification for GCR simulator
 - Female BFO behind 20 g/cm² spherical aluminum shielding during solar minimum conditions

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>126</td>
<td>86.0</td>
<td>131.1</td>
<td>1.5</td>
</tr>
<tr>
<td>helium</td>
<td>7</td>
<td>22.5</td>
<td>93.8</td>
<td>4.2</td>
</tr>
<tr>
<td>HZE</td>
<td>0.5</td>
<td>8.9</td>
<td>73.3</td>
<td>8.2</td>
</tr>
</tbody>
</table>

<Q> is notation for average quality factor.
General beam selection strategy is tied to reference field fluence

- Hydrogen and helium represented in energy domain
- Heavy ions represented in LET domain
- Beam intensities computed by integrating reference field fluence over bin limits
- Heavy ion beams chosen from lookup tables to match LET values
General Beam Selection Strategy

- Hydrogen and helium components explicitly represented in energy domain
 - Greater emphasis given to hydrogen and helium because they account for 81% of dose and 67% of dose equivalent
 - Combination of degrader system and energy switching implemented
General Beam Selection Strategy

- Heavy ion ($Z > 2$) contributions represented in the LET domain
 - Do not want rapid variation (Bragg peaks) occurring within animals
 - Require heavy ions to be energetic enough to pass through animal model
 - Use LET look-up tables to select ions for each bin
General Beam Selection Strategy

- Lower energy portion of hydrogen and helium spectra is being represented by using polyethylene degrader system
 - Similar procedure as previously implemented for SPE simulator
 - Need to determine number of low energy bins required to achieve reasonably smooth internal exposure profiles
General Beam Selection Strategy

Dose profiles within phantom exposed to <150 MeV protons

- Internal variation appears to be controlled with as few as 10 energy bins for low energy portion of hydrogen spectrum
 - Bragg peaks obvious if 3 or 5 bins are used
 - Similar results found for alpha beams used to represent helium component
 - Using more than 25 bins starts to reach fidelity of degrader system at NSRL
Example Beam Selection

- Remaining analyses will consider the following case:
 - 10 low energy bins for protons and alphas
 - 5 high energy bins for protons and alphas
 - 15 LET bins for HZE component
Beam induced spectral quantities are in good qualitative agreement with reference field
- Reasonable agreement across full range of LET values
- \((Z'/\beta)^2\) spectrum provides a somewhat independent check since beam selection was not guided by this quantity
Example Beam Selection

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>126.0</td>
<td>86.0</td>
<td>131.1</td>
<td>1.5</td>
</tr>
<tr>
<td>helium</td>
<td>7.0</td>
<td>22.5</td>
<td>93.8</td>
<td>4.2</td>
</tr>
<tr>
<td>HZE</td>
<td>0.5</td>
<td>8.9</td>
<td>73.3</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Reference field integrated quantities

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>105.0</td>
<td>71.2</td>
<td>95.5</td>
<td>1.3</td>
</tr>
<tr>
<td>helium</td>
<td>4.5</td>
<td>16.3</td>
<td>49.7</td>
<td>3.0</td>
</tr>
<tr>
<td>HZE</td>
<td>0.3</td>
<td>8.3</td>
<td>67.0</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Beam induced integrated quantities at center of phantom

- Cell nucleus hits computed by assuming cross sectional area of 100 µm²
- Hits/cell results consistent with previous calculations by Curtis et al.
Summary

- Facility constraints limit the ability to simulate the external, free space field directly
 - Proposed simulator design instead focuses on reproducing the local tissue field

- Variation in the induced tissue field was examined
 - A single reference environment for deep space is reasonable at this time

- An approach for beam selection in the simulator was presented
 - The approach is tied directly to the reference environment flux
 - Allows systematic improvements to be made
 - Spectral quantities and integrated quantities are reasonably well represented
 - Optimization procedures could be developed to improve overall agreement

- Drawbacks of the proposed strategy include
 - Neutron and π/EM components
 - Lower energy constraints for HZE particles associated with animal models
 - These drawbacks could be addressed by augmenting the existing design if necessary
Backup: Example Beam Info

- Proton beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/µm)</th>
<th>(Z*/β)²</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.4</td>
<td>6.4</td>
<td>63.8</td>
<td>1.6 x 10⁵</td>
<td>1.48</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10.2</td>
<td>5.0</td>
<td>46.7</td>
<td>2.5 x 10⁵</td>
<td>1.83</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14.0</td>
<td>3.8</td>
<td>34.3</td>
<td>4.0 x 10⁵</td>
<td>2.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19.2</td>
<td>3.0</td>
<td>25.2</td>
<td>6.3 x 10⁵</td>
<td>2.73</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>26.4</td>
<td>2.3</td>
<td>18.6</td>
<td>9.8 x 10⁵</td>
<td>3.30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>36.2</td>
<td>1.8</td>
<td>13.7</td>
<td>1.5 x 10⁶</td>
<td>3.91</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>49.6</td>
<td>1.4</td>
<td>10.2</td>
<td>2.2 x 10⁶</td>
<td>4.52</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>68.0</td>
<td>1.1</td>
<td>7.7</td>
<td>3.2 x 10⁶</td>
<td>5.02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>93.3</td>
<td>0.8</td>
<td>5.8</td>
<td>4.3 x 10⁶</td>
<td>5.30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128.1</td>
<td>0.7</td>
<td>4.4</td>
<td>5.4 x 10⁶</td>
<td>5.31</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>205.0</td>
<td>0.5</td>
<td>3.1</td>
<td>1.4 x 10⁷</td>
<td>9.62</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>383.2</td>
<td>0.3</td>
<td>2.0</td>
<td>1.7 x 10⁷</td>
<td>8.53</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>716.0</td>
<td>0.26</td>
<td>1.5</td>
<td>2.1 x 10⁷</td>
<td>7.99</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1337.9</td>
<td>0.23</td>
<td>1.2</td>
<td>2.1 x 10⁷</td>
<td>6.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2500.0</td>
<td>0.22</td>
<td>1.1</td>
<td>1.6 x 10⁷</td>
<td>5.35</td>
</tr>
</tbody>
</table>
Backup: Example Beam Info

- Alpha beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/µm)</th>
<th>$(Z^*/\beta)^2$</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>7.4</td>
<td>25.6</td>
<td>255.3</td>
<td>1.4×10^4</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10.2</td>
<td>19.8</td>
<td>186.9</td>
<td>2.1×10^4</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>14.0</td>
<td>15.4</td>
<td>137.0</td>
<td>3.2×10^4</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19.2</td>
<td>11.9</td>
<td>100.7</td>
<td>4.9×10^4</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>26.4</td>
<td>9.2</td>
<td>74.2</td>
<td>7.4×10^4</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>36.2</td>
<td>7.1</td>
<td>54.9</td>
<td>1.1×10^5</td>
<td>1.12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>49.6</td>
<td>5.5</td>
<td>40.9</td>
<td>1.5×10^5</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>68.0</td>
<td>4.3</td>
<td>30.6</td>
<td>2.0×10^5</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>93.3</td>
<td>3.4</td>
<td>23.2</td>
<td>2.5×10^5</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>128.1</td>
<td>2.7</td>
<td>17.7</td>
<td>2.9×10^5</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>185.2</td>
<td>2.1</td>
<td>13.2</td>
<td>4.7×10^5</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>282.3</td>
<td>1.6</td>
<td>9.8</td>
<td>6.0×10^5</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>430.3</td>
<td>1.3</td>
<td>7.5</td>
<td>7.5×10^5</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>656.0</td>
<td>1.1</td>
<td>6.1</td>
<td>8.4×10^5</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1000.0</td>
<td>1.0</td>
<td>5.2</td>
<td>8.2×10^5</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Backup: Example Beam Info

- HZE beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/µm)</th>
<th>((Z^*/\beta)^2)</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>736</td>
<td>2.4</td>
<td>13.1</td>
<td>2.5 \times 10^4</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>331</td>
<td>3.3</td>
<td>19.8</td>
<td>1.9 \times 10^4</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>189</td>
<td>4.6</td>
<td>29.3</td>
<td>1.1 \times 10^4</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>788</td>
<td>6.4</td>
<td>35.5</td>
<td>4.4 \times 10^4</td>
<td>0.41</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>887</td>
<td>9.0</td>
<td>48.9</td>
<td>7.9 \times 10^4</td>
<td>1.03</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>365</td>
<td>12.6</td>
<td>74.7</td>
<td>6.4 \times 10^4</td>
<td>1.18</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>644</td>
<td>17.5</td>
<td>98.7</td>
<td>4.3 \times 10^4</td>
<td>1.11</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>306</td>
<td>24.5</td>
<td>148.3</td>
<td>2.3 \times 10^4</td>
<td>0.84</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>590</td>
<td>34.2</td>
<td>194.2</td>
<td>1.7 \times 10^4</td>
<td>0.85</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>988</td>
<td>47.8</td>
<td>256.9</td>
<td>1.1 \times 10^4</td>
<td>0.76</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>755</td>
<td>66.7</td>
<td>369.4</td>
<td>5.7 \times 10^3</td>
<td>0.55</td>
</tr>
<tr>
<td>39</td>
<td>19</td>
<td>781</td>
<td>93.2</td>
<td>514.0</td>
<td>3.6 \times 10^3</td>
<td>0.48</td>
</tr>
<tr>
<td>47</td>
<td>22</td>
<td>682</td>
<td>130.2</td>
<td>728.1</td>
<td>3.0 \times 10^3</td>
<td>0.56</td>
</tr>
<tr>
<td>56</td>
<td>26</td>
<td>682</td>
<td>181.8</td>
<td>1016.8</td>
<td>2.8 \times 10^3</td>
<td>0.74</td>
</tr>
</tbody>
</table>