Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties

T.C. Slaba1, P.M. O’Neill2, S. Golge3, J.W. Norbury1

1NASA Langley Research Center, Hampton, VA
2NASA Johnson Space Center, Houston, TX
3University of Houston, Houston, TX

Solar Energetic Particles, Solar Modulation and Space Radiation: New Opportunities in the AMS-02 ERA
October 18-23, 2015
Honolulu, Hawaii, USA
Outline

• Radiation exposure analysis overview
• Initial sensitivity and uncertainty quantification results
• Galactic cosmic ray (GCR) models
• Impact of AMS-02 measurements on reducing uncertainties
Exposure Analysis Overview

- Shielding models
- Environment models
- Physics models

Radiation transport models

Exposure & Biological response
Impact of GCR Model Uncertainty

- GCR protons account for >50% of the total exposure behind shielding\(^{(1)}\)
- GCR alphas are the next largest contributor
- Ions with Z > 2 and energy below 500 MeV/n (ACE) account for less than 5% of the exposure

Relative contribution (%) of each boundary ion/energy group to effective dose behind 20 g/cm\(^2\) aluminum during solar minimum\(^{(1)}\).

<table>
<thead>
<tr>
<th>Boundary energy interval (GeV/n)</th>
<th>< 0.25</th>
<th>[0.25, 0.5]</th>
<th>[0.5, 1.5]</th>
<th>[1.5, 4]</th>
<th>> 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z = 1</td>
<td>1.2</td>
<td>5.4</td>
<td>18.2</td>
<td>18.4</td>
<td>14.8</td>
<td>58.1</td>
</tr>
<tr>
<td>Z = 2</td>
<td>1.2</td>
<td>2.2</td>
<td>4.1</td>
<td>2.9</td>
<td>1.7</td>
<td>12.2</td>
</tr>
<tr>
<td>Z = 3-10</td>
<td>< 0.1</td>
<td>3.3</td>
<td>3.8</td>
<td>1.3</td>
<td>0.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Z = 11-20</td>
<td>< 0.1</td>
<td>0.2</td>
<td>6.6</td>
<td>2.0</td>
<td>1.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Z = 21-28</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>4.7</td>
<td>3.8</td>
<td>2.1</td>
<td>10.6</td>
</tr>
<tr>
<td>Totals</td>
<td>2.5</td>
<td>11.1</td>
<td>37.4</td>
<td>28.4</td>
<td>20.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Impact of GCR Model Uncertainty

- GCR model uncertainty induces roughly +20% error on effective dose$^{(2)}$
 - Results below for Badhwar-O’Neill (BON) 2014 GCR model$^{(3)}$

![Effective dose versus shield thickness during solar minimum](image)

- Error bars represent uncertainty associated with GCR model only
- For nominal vehicle shielding (>10 g/cm2), relative errors are roughly +20%

The Badhwar O’Neill (BON) galactic cosmic ray model is used at NASA as input into radiation transport codes for:
- vehicle design, mission analysis, astronaut risk analysis
- other models used as well (discussed in later slides)

BON model revisions are based on the same fundamental framework:
- Model equations are solved to describe particle transport through solar system
- Solar activity is described by a single parameter related to observed sunspot numbers
International Models and Comparisons

• GCR models tend to agree reasonably well at highest energies\(^{(2)}\)
 – Effects of solar modulation are less pronounced
 – Significant contributor to exposure behind shielding

GCR proton & alpha flux compared to measurements

• Matthia et al. (DLR) recently developed a simplified form of Nymmik’s model\(^{(6)}\)
 – Shown to be reasonably accurate\(^{(2,6)}\)

• Nymmik (MSU) has developed a semi-empirical model\(^{(4,5)}\) (not shown)
 – Used by Russian Space Agency & others (DLR, ESA)
 – Official update has not been provided recently

International Models and Comparisons

- Exposures behind shielding are in good agreement if updated GCR models are used
 - BON2014 and Matthia are within 10% of each other, on average, over past 40 years
GCR Model Development

- GCR models are developed and validated using available measurements
 - Short duration, high energy, balloon and satellite measurements
 - Low energy, continuous measurements from ACE/CRIS (most of the available measurements)
 - Current gap in measurement database for continuous, high energy measurements

<table>
<thead>
<tr>
<th>Name</th>
<th>Flight</th>
<th>Time</th>
<th>Ions (Z)</th>
<th>Energy (GeV/n)</th>
<th>Data pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE/CRIS</td>
<td>Satellite</td>
<td>1998-present</td>
<td>5-28</td>
<td>0.05 – 0.5</td>
<td>8288</td>
</tr>
<tr>
<td>AMS</td>
<td>STS-91</td>
<td>1998</td>
<td>1, 2</td>
<td>0.1 – 200</td>
<td>58</td>
</tr>
<tr>
<td>ATIC-2</td>
<td>Balloon</td>
<td>2002</td>
<td>1, 2, 6, 8, 10,…, 14, 26</td>
<td>4.6 – 10^3</td>
<td>55</td>
</tr>
<tr>
<td>BESS</td>
<td>Balloon</td>
<td>1997-2000, 2002</td>
<td>1, 2</td>
<td>0.2 – 22</td>
<td>300</td>
</tr>
<tr>
<td>CAPRICE</td>
<td>Balloon</td>
<td>1994, 1998</td>
<td>1, 2</td>
<td>0.15 – 350</td>
<td>93</td>
</tr>
<tr>
<td>CREAM-II</td>
<td>Balloon</td>
<td>2005</td>
<td>6-8, 10, 12, 14, 26</td>
<td>18 – 10^3</td>
<td>42</td>
</tr>
<tr>
<td>HEAO-3</td>
<td>Satellite</td>
<td>1979</td>
<td>4-28</td>
<td>0.62 – 35</td>
<td>331</td>
</tr>
<tr>
<td>IMAX</td>
<td>Balloon</td>
<td>1992</td>
<td>1, 2</td>
<td>0.18 – 208</td>
<td>56</td>
</tr>
<tr>
<td>IMP-8</td>
<td>Satellite</td>
<td>1974</td>
<td>6, 8, 10, 12, 14</td>
<td>0.05 – 1</td>
<td>53</td>
</tr>
<tr>
<td>LEAP</td>
<td>Balloon</td>
<td>1987</td>
<td>1, 2</td>
<td>0.18 – 80</td>
<td>41</td>
</tr>
<tr>
<td>MASS</td>
<td>Balloon</td>
<td>1991</td>
<td>1, 2</td>
<td>1.6 – 100</td>
<td>41</td>
</tr>
<tr>
<td>PAMELA</td>
<td>Satellite</td>
<td>2006-2009</td>
<td>1, 2</td>
<td>0.08 – 10^3</td>
<td>472</td>
</tr>
<tr>
<td>TRACER</td>
<td>Balloon</td>
<td>2003</td>
<td>8, 10, 12,…, 20, 26</td>
<td>0.8 – 10^3</td>
<td>55</td>
</tr>
<tr>
<td>Lezniak</td>
<td>Balloon</td>
<td>1974</td>
<td>4-14, 16, 20, 26</td>
<td>0.35 – 52</td>
<td>131</td>
</tr>
<tr>
<td>Minagawa</td>
<td>Balloon</td>
<td>1975</td>
<td>26, 28</td>
<td>1.3 – 10</td>
<td>16</td>
</tr>
<tr>
<td>Muller</td>
<td>STS-51</td>
<td>1985</td>
<td>6, 8, 10, 12, 14</td>
<td>50 – 10^3</td>
<td>16</td>
</tr>
<tr>
<td>Simon</td>
<td>Balloon</td>
<td>1976</td>
<td>5-8</td>
<td>2.5 – 10^3</td>
<td>46</td>
</tr>
</tbody>
</table>

82% of available data
Recent work has significantly reduced model uncertainties (3)

- More rigorous approach to model calibration and validation – resulted in BON2014
- Determined measurements (energies) most important for exposure quantities behind shielding
- Model parameters calibrated using optimization methods with an emphasis on higher energies
- Comprehensive validation metrics applied to quantify model uncertainty
- Process can include new measurements and is repeatable

Impact of AMS-02 Data

• Widely used GCR models are mainly semi-empirical
 – Data is needed to refine free parameters in models

• AMS-02 data will serve two important functions
 – Provide substantial data for independent validation
 (i.e. data not used to tune model)
 – Fill important data gaps to enable improved parameter calibration

• Current schedule for using AMS-02 for GCR measurements is mainly driven by impact on exposure
 – Monthly GCR proton measurements for energies greater than 500 MeV
 – Next step is to analyze GCR alphas
 – Specific heavy ions will be emphasized later
Impact of AMS-02 Data

- If GCR proton and alpha uncertainty is cut in half
 - Uncertainty estimate drops from roughly $\pm 20\%$ to $\pm 15\%$

Graph: Effective dose versus shield thickness during solar minimum

- Error bars represent uncertainty associated with GCR model only
- Blue error bars represent current model uncertainties
- Red error bars represent assumed modified uncertainties with AMS-02 measurements
Impact of AMS-02 Data

- If GCR proton and alpha uncertainty is entirely removed
 - Uncertainty estimate drops from roughly $+20\%$ to $+5\%$

Effective dose versus shield thickness during solar minimum

- Error bars represent uncertainty associated with GCR model only
- Blue error bars represent current model uncertainties
- Red error bars represent assumed modified uncertainties with AMS-02 measurements
Summary

• Widely used GCR models rely on available measurements
 – Measurements used directly for development and validation
 – Updated models are in reasonable agreement
 – GCR models induce roughly ±20% uncertainty on effective dose behind shielding

• AMS-02 will fill an important gap in the measurement database
 – Significant need for high energy, time-resolved proton and alpha measurements
 – Current measurement database is dominated by ACE/CRIS
 – ACE/CRIS measurement domain induces less than 5% of exposure behind shielding

• Proton and alpha measurements from AMS-02 will reduce model uncertainties
 – Possibility exists to have a significant impact on reducing overall exposure uncertainties

