Ceres Revealed in a Grain of Salt

M.E. Zolensky1*, R.J. Bodnar2, M. Fries1, Q.H.-S. Chan1, Y. Kebukawa3, T. Mikouchi4, K. Hagiya5, M. Komatsu6, K. Ohsumi7, A. Steele8

1ARES, NASA JSC, Houston, TX 77058, USA
2Virginia Tech, Blacksburg, VA, 24061, USA
3Yokohama National University, Yokohama, Japan;
4University of Tokyo, Hongo, Tokyo 113-0033, Japan
5Graduate School of Life Sci., Hyogo University, Japan
6SOKENDAI, Grad. Univ. for Advanced Studies, Japan
7JASRI, Hyogo 679-5198, Japan
8Carnegie Geophysical Lab, Washington, DC, USA

*correspondence: michael.e.zolensky@nasa.gov

Introduction

Zag and Monahans (1998) are H chondrite regolith breccias containing 4.5 GY old halite crystals which contain abundant inclusions of aqueous fluids, solids and organics [1-5]. These all originated on a cryovolcanically-active C class asteroid, probably 1 Ceres [3, 4]; the halite was transported to the regolith of the H chondrite parent asteroid, potentially 6 Hebe. Detailed analysis of these solids will thus potentially reveal the mineralogy of Ceres.

Mineralogy of Solids in the Monahans Halite

Solid grains are present in the halites, which were entrained within the mother brines during eruption, including material from the interior and surface of the erupting body. The solids include abundant, widely variable organics [6] that could not have been significantly heated (which would have resulted in the loss of fluids from the halite). Our analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction, UPLC-FD/QToF-MS, C-XANES and TEM reveal that these trapped grains include macromolecular carbon (MMC) similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, phyllosilicates, magnetite, sulfides, metal, lepidocrocite, carbonates, diamond, apatite and zeolites.

Conclusions

The halite in Monahans and Zag derive from a water and carbon-rich object that was cryovolcanically active in the early solar system, probably Ceres [3]. The Dawn spacecraft found that Ceres includes C chondrite materials. Our samples include both protolith and aqueously-altered samples of the body, permitting understanding of alteration conditions. Whatever the halite parent body, it was rich in a wide variety of organics and warm, liquid water at the solar system’s dawn.

This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.