Recent Aeroacoustic Tools and Methods Developments for Analysis and Design of Advanced Aviation Systems

Stephen A. Rizzi, Leonard V. Lopes and Casey L. Burley
Aeroacoustics Branch
NASA Langley Research Center

53rd AIAA Aerospace Sciences Meeting @ SciTech 2015
Kissimmee, FL
January 8, 2015
Outline

• Aeroacoustic Tools and Methods Development

• Aeroacoustics Tools and Methods – Use Cases
 – System Noise
 – CFD/CAA Based Design
 – Time Dependent Configurations

• Perception-Influenced Design
 – NASA Auralization Framework
 – Open Rotor and Distributed Electric Propulsion Auralizations

• Concluding Remarks
Aeroacoustic Tools and Methods

Validated Aeroacoustic Tools & Methods for Low Noise

- Source Noise Models & Reduction
- Propulsion Airframe Aeroacoustics
- Multiple Fidelity System Noise Prediction

- Engine & Airframe
- Noise Reduction Technology
- Measurement Methods
- Installed Sources
- Scattering Methods
- Installed Effectiveness
- ANOPP
- ANOPP2
- Propagation Models
Aeroacoustic Tool and Methods – Development

NASA Projects: Push capabilities to AS/T³ for advancing tools and methods
- cross-cutting source noise models and data
- validation data

NASA Projects + Other Government Agencies + Industry: Pull of AS/T³ Tools and Methods
- Capabilities to perform system noise prediction and MDAO analysis

<table>
<thead>
<tr>
<th>AS/T³ enabled</th>
<th>AS/T³</th>
<th>Environmentally Responsible Aviation</th>
<th>Fixed Wing</th>
<th>Rotary Wing</th>
<th>High Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion Airframe Aeroacoustics</td>
<td>TD-FAST</td>
<td>• Data</td>
<td>Fast Scattering Code (FSC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diffraction Integral Method (DIM3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine source</td>
<td></td>
<td>• Soft vane</td>
<td>• Core models/data</td>
<td></td>
<td>• Surrogate models for jet noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Engine fan data</td>
<td>• Fan models/data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Soft vane data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airframe source</td>
<td></td>
<td>• LG data</td>
<td>• LG models</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flap-side edge data</td>
<td>• Flap-side edge models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source to receiver effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Propagation models/data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrain effects</td>
</tr>
</tbody>
</table>
NRA: Fast Efficient Computation of Acoustic Scattering for Aircraft Noise Prediction (Old Dominion University)

APPROACH
Develop, implement and validate a fast, efficient, high-fidelity time domain acoustic scattering tool for a complete aircraft configuration over a practical frequency range.

• Implement a boundary element computation on unstructured triangular and quadrilateral surface elements
• Validate results with known time and frequency domain benchmark solutions
• Demonstrate the validity and efficiency of the method for full conventional and unconventional aircraft configurations
• Develop interface for integration with the ANOPP2 multi-fidelity framework

SIGNIFICANCE
The validated time domain acoustic scattering tool (TD-FAST) provides higher-fidelity acoustic shielding/scattering predictions for incorporation into system noise assessments of current and future aircraft configurations.

POSSIBLE FUTURE WORK
• Incorporation of external incident source descriptions
• Incorporation of impedance boundary condition on scattering surfaces
• Implementation and validation of a CPU-only version

SciTech 2015
Aeroacoustic Tools and Methods – Use Cases

- System Noise
- CFD/CAA Based Design
- Time-Dependent Configurations including Flow and Acoustics
System Noise

Outline of Program using ANOPP2

Aircraft Definition and Mission
- Atmosphere Data Structure
- Flight Path Data Structure
- Engine System Data Structure
- Geometry Data Structure
- Observer Data Structure

Select ‘Functional Modules’ (partial list)
- ANOPP
- Flight Effects, Propagation
- PAA Effects
- Surrogate Model
- Farassat’s Formulations
- Wind Tunnel Measurements

Predict Noise for Mission
- User defines computational settings
- Results stored on Observer Data Str.

Results: noise, mission, aircraft state

ANOPP2 Configuration Files

- Flight Path Configuration
- Engine State Data
- Measurement Data
- Flow Data
- Plugin Configuration

External Functional Noise Module

Externally Computed Flight Path Definition (ex: FLOPS)
NPSS: Engine State
Measured/Predicted Noise
Externally Computed Flow Properties

Acoustics
- Time histories, 1/3rd-Octaves, Narrowband
- PNL, PNLT vs. emission angle
- EPNL, SEL (certification point, contour)
- Sensitivity Matrices (Adjoint Solutions)

Aircraft/Prediction Information and Metadata
- Flight Trajectory (Throttle, Mach, Altitude, etc.)
- Engine State
- Source Geometric and Flow Properties
Noise Assessment of HWB Aircraft

• **Evaluate closed HWB design (N2A-EXTE)**
 – Boeing redesign of the CMI SAX 40 via NASA Research Announcement award (2007-2011)
 – Simultaneously meet NASA N+2 goals for noise (42 EPNdB below Stage 4) and fuel burn (>25% reduction rel. B737/767 technology)
 – Fabricate and deliver a full-span, 5.8% scale model for aerodynamic and acoustic testing

• **NASA Langley conducted aerodynamic (2011) and acoustic (2012-2013) tests**

• **Noise assessment process developed to utilize latest data and prediction methods**
 – Measured aerodynamic performance for aircraft configuration & flight path definition
 – Measured acoustic data for source noise and propulsion airframe aeroacoustic effects
 – ANOPP2/ANOPP prediction for source noise, propagation, certification noise metrics
EPNL predicted at FAR 36 locations

ANOPP2

Aircraft Flight Definition (trajectory, configuration, operating state)

ANOPP
Jet: CJES data
Core: GECOR (SAE876)
Fan: Heidmann (Krejsa)
Airframe: measured

ANOPP Jet: CJES data
Core: GECOR (SAE876)
Fan: Heidmann (Krejsa)
Airframe: measured

PAA Effects
Fan + BENS-shielding
Core + BENS-shielding

Flight profiles that meet FAR 36 & low noise
Engine state for FPR=1.6, BPR~10

FLOPS

NPSS

• Low speed aero from HWB aero test
• Elevon settings defined by stability & control considerations
• Airframe geometry definition from design
• Aircraft weights from design

Measured source noise (lossless)
- Jet noise (CJES)
- Airframe noise:
 LG: (nose and main), drooped LE trailing edge

Measured noise suppression (BENS): turbomachinery exit and inlet

Blue indicates measured data
FLOPS = Flight Optimization System
NPSS = Numerical Propulsion Simulation System
ANOPP = Aircraft Noise Prediction Program
BENS = Broadband Engine Noise Simulator
CJES = Compact Jet Engine Simulator

SciTech 2015
Cumulative System Noise Results

- Engine x/D=2.5
- Chevrons
- Droop L.E.
- Verticals cant 10°
- Narrow/cant 30° verticals
- Over-the-Rotor & Soft-Vane
- Low noise landing gear

NASA N+2 goal = 42dB

38.7 dB is reached with technology assumptions for fan and gear noise

SciTech 2015
Aeroacoustic Tools and Methods

Validated Aeroacoustic Tools & Methods for Low Noise

Source Noise Models & Reduction → Propulsion Airframe Aeroacoustics → Multiple Fidelity System Noise Prediction

- Installed Sources
- Scattering Methods
- Installed Effectiveness

- ANOPP2
- ANOPP
- Propagation Models

SciTech 2015
Component PNLT for “Best” Configuration

“Best” Configuration
- Engine at x/D=2.5
- Optimized Chevrons
- Drooped leading edge
- Narrow/cant30 verticals
- Low noise landing gear
- Over-the-Rotor liner & Soft-Vane fan noise technologies

Approach A1

Sideline (Full-throttle)

Flyover (Cutback)
Aeroacoustic Tools and Methods

Validated Aeroacoustic Tools & Methods for Low Noise

- Source Noise Models & Reduction
- Propulsion Airframe Aeroacoustics
- Multiple Fidelity System Noise Prediction

- Engine & Airframe
- Noise Reduction Technology
- Measurement Methods

- ANOPP2
- ANOPP
- Propagation Models
System Noise in MDAO Environment

2014 (complete):
• Initial coupling ANOPP2 with Model Center for conventional 737 aircraft

2015:
• Coupling ANOPP2 with Model Center for unconventional aircraft utilizing scattering method
• Initial coupling ANOPP2 with OpenMDAO for conventional 737 aircraft

2016:
• Coupling ANOPP2 with OpenMDAO for unconventional aircraft utilizing scattering method
• Initial coupling using adjoint methodology of ANOPP2 within OpenMDAO
Aeroacoustic Tools and Methods – Use Cases

- System Noise
- CFD/CAA Based Design
- Time-Dependent Configurations including Flow and Acoustics
CFD/CAA Based Design

- CFD
- Aero

ANOPP2 Framework
- Farassat’s Formulations
- Scattering Metric Calculations
- Acoustic Interpolation
- Scaling to Flight (Adjoint Capability)

OpenMDAO/Model Center
- Optimal Performance
- Optimal Noise

Optimal Design
Open Rotor Noise Prediction

- Development of an open rotor noise prediction methodology
- Comparison with CRPFAN (not shown) will provide further confidence in NASA’s suite of open rotor prediction tools
 - Multi-fidelity source modeling capability within ANOPP2
- Mixture of prediction methods leads to better understanding of noise characteristics
- More accurate N+2, N+3 system assessments based on predicted source levels as opposed to measurement
Aeroacoustic Tools and Methods – Use Cases

- System Noise
- CFD/CAA Based Design
- Time-Dependent Configurations including Flow and Acoustics
Time Dependent Configurations – Rotorcraft Noise Prediction and Propagation

Step 1: CFD / CSD Coupling
- CAMRAD-II
- Blade motions
- OverFLOW2
- Inputs for CFD

Step 2: Post Processing and ANOPP2 Usage
- Blade Motions and Surface Pressures
- Inputs for ANOPP2

ANOPP2 User Code:
- Uses ANOPP2 APIs
- Obtain F1A for results on hemisphere
- Duplicate results at flyover start and end
- “Fly” hemisphere with ANOPP
- Compute and export results at observer.

Dr. Doug Boyd

SciTech 2015
What do these transformative systems have in common?
Perception-Influenced Design
“A synthesis of validated aeroacoustic tools and methods plus human perception”

Validated Aeroacoustic Tools & Methods for Low Noise
- Source Noise Models & Reduction
- Propulsion Airframe Aeroacoustics
- Multiple Fidelity System Noise Prediction

MDAO Environment

Auralization

Human Perception and Metrics
- NAF
- CNoTE

Psychoacoustic Labs
- EER
- IER
- Boom Simulator

- Engine & Airframe
- Noise Reduction Technology
- Measurement Methods
- Installed Sources
- Scattering Methods
- Installed Effectiveness
- ANOPP2
- ANOPP
- Propagation Models
NASA Auralization Framework (NAF)

- **Auralization of aircraft flyover noise consists of source-path-receiver modeling**
 - Source noise synthesis based on prediction (ANOPP, ANOPP2), flight-scaled wind tunnel data, flight test data
 - Propagation of synthesized noise generates pseudo-recording at ground receiver and accounts for spreading loss, atmospheric absorption, Doppler simulation, and ground plane effects
 - Pseudo-recording demonstrated to obtain same integrated metrics as those obtained from system noise prediction
 - Receiver modeling takes pseudo-recording to a subjective test environment for evaluation

Host Environment

(Executable, GUI, MATLAB, LabView, etc.)

[C/C++, VisualBasic, Java, MATLAB, etc.]

API

Object Definitions
- Component
- Source
- SourceFrame
- Sink
- Receiver
- Envelope
- Path
- PolySampleBuf
- GTF
- GTFSeries

SceneGen

Defines a “simulation frame” at block boundary by traversing and interpolating trajectories, and reading live sensors

PathFinder

Connects sinks back in time to sources through multi-path algorithms, maintaining at least source x sink paths at each frame

SynthEngine

Creates new block of time pressure history from each component for each different emission angle for each frame

GTFEngine

Applies Gain-Time-Filter to TPH at fractional samples for each path
Open Rotor Propulsor – Effect of Blade Set

Historical Blade Set (RDG 361)

- **SPL_A - Aural**
- **SPL_A - ANOPP**
- **PNLT - Aural**
- **PNLT - ANOPP**

- EPNL Cut-Off
- 111.3 (ANOPP), 111.3 (Aural) EPNdB

Gen-2 Blade Set

- **Solo** (flush receiver)
- **Interleaved with RDG 361** (flush receiver)
- **Solo** (elevated receiver)
- **Interleaved with RDG 361** (elevated receiver)

- 100.5 (ANOPP), 100.2 (Aural) EPNdB – Flush
- 97.6 (ANOPP), 97.5 (Aural) EPNdB – Elevated

SciTech 2015
DEP Aircraft Component and System Noise

High lift systems (LEP & T.E.)
- Motor nacelles
- Minimize turbulent edge flows

Engine/airframe integration
- Prop-prop interaction
- Prop-wing interaction

Landing gear design & placement

Propulsion/LEP System
- Propeller noise
- Electric motor noise
- Low annoyance/detection configurations
Effect of Spread Spectrum on Leading Edge Propeller Noise

State-of-the-Art General Aviation Baseline – Cirrus SR22
Average Source Power: 102.2 dB (prop only)

Distributed Electric Propulsion – LEAPTech Concept with 18 propellers
Average Source Power: 87.5 dB (props only) for all configurations below, yet sound very different

Notes
• All average source power levels taken over 1km x 1km area
• Sound sampled at ground location in middle of area, with aircraft flying 150m directly overhead

SciTech 2015
Concluding Remarks

• NASA aeroacoustic tools span range from source noise prediction and reduction, to PAA, to systems analysis, to human perception and metrics
 – Unifying ANOPP2 and NAF frameworks allow projects to plug-in their own methods and both leverage and invest in the cross-cutting toolset that AS/T³ is continuing to develop.
 – Tools under development support all NASA aeronautics projects and those of other government agencies and industry.

• Aeroacoustic tools and methods demonstrated for system noise prediction, CFD/CAA based designs, and time-dependent configurations
 – ANOPP2 acoustic formulations provide a new path for Revolutionary Computational Aerosciences work to achieve optimized air vehicle designs

• Perception-influenced design is a means of achieving low noise conceptual and detail design for advanced configurations in a MDAO environment
 – This is an enabling capability not previously available
 – Applies to vehicle systems over a wide range of flight regimes