The Effect of Surface Chemical Functionality upon Ice Adhesion

In nature, anti-freeze proteins present in fish utilize specific organic functionalities to disrupt ice crystal formation and propagation. Based on these structures, surfaces with controlled chemical functionality and chain length were evaluated both experimentally and computationally to assess the effect of both parameters in mitigating ice formation. Linear aliphatic dimethylethoxysilanes terminated with methyl or hydroxyl groups were prepared, characterized, and used to coat aluminum. The effect upon icing using a microdroplet freezing apparatus and the Adverse Environment Rotor Test Stand found hydroxyl-terminated materials exhibited a greater propensity for ice formation and adhesion. Molecular dynamics simulations of a silica substrate bearing functionalized species of similar composition were brought into contact with a pre-equilibrated ice crystal. Several parameters including chain mobility were monitored to ascertain the size of a quasi-liquid layer. The studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition.

Presenting Author:
Joseph G. Smith Jr., Ph.D.
Senior Polymer Synthesis Scientist
National Aeronautics and Space Administration
NASA Langley Research Center, MS 226
Hampton, VA 23681
office: (757)-864-8074
lab: (757) 864-4004
fax: (757) 864-8312
c.j.wohl@nasa.gov

Co-Authors:
Christopher J. Wohl (NASA LaRC)
Jereme Doss (National Institute of Aerospace)
Destiny Spence (NASA LaRC, Undergraduate Student Research Program)
Richard E. Kreeger (NASA Glenn Research Center)
Jose Palacios and Taylor Knuth (Penn State University)
Kevin R. Hadley and Nicholas D. McDougal (South Dakota School of Mines and Technology)