Southern California Disasters II
Heather Nicholson, Amber Todoroff, Madeline LeBoeuf
NASA DEVELOP National Program

There has been an increase in the number of wildfires in California due to drought and warmer weather. In 2014, approximately 5,500 wildfires burned more than 90,000 acres in California. An increase in wildfires can lead to soil erosion, expansion of invasive plant species, and loss of property and life. It is necessary to be able to quickly map the burn severity of a wildfire in order to mitigate its effects.

Introduction

Outcomes

• Statistical analyses were performed in R. The indices were proved to have non normal distributions by Shapiro-Wilks tests.
• A Wilcoxon rank-sum test with continuity correction further suggested that there is a statistically significant difference between the indices.
• Spearman’s rank correlation coefficient implied that all indices were strongly correlated to the ground truth data for the King Fire.

Objectives

• Use simulated HyspIRI data to produce wildfire burn severity and vegetation assessment products which are used to aid post wildfire remission and wild land restoration
• Quantitatively compare HyspIRI products to similar Landsat-based products generated by the USFS to assess and show how hyperspectral satellite data may help improve current capabilities.

Summary

The results from this project suggest that future HyspIRI data will be a valuable data source for USFS post-fire decision support.

Acknowledgements/References: Joseph Spruce, James ‘Doc’ Smoot, Ross Reahard, DEVELOP National Program Office, Brad Quayle – USFS Remote Sensing Application Center, Natasha Stavros – Jet Propulsion Laboratory NASA Applied Sciences Rapid Response to the King Fire and the US Forest Service for funding the King Fire GeoCBI