2nd Generation ELT Performance Specification Development

Chad M. Stimson, Technical Manager
NASA Langley Research Center
Phone: (757) 864-3787
E-Mail: Chad.M.Stimson@NASA.gov
NASA Project Overview

NASA SAR is supporting RTCA with the goal of making “significant improvement to ELT performance” through a multi-faceted research, analysis and test effort.

Research:
- Historic and current failure rates and modes
 - Crash data from NTSB and other international sources
 - Compare current to historic trends
 - Identify previous improvements to avoid duplication of effort
 - Identify primary failure modes

Analysis:
- Nonlinear dynamics analysis of severe but survivable airplane crash scenarios
 - Validate models through test correlation
 - Investigate various installation plans

Test:
- Ground-based unit testing and installed system crash testing
 - Crash safety testing
 - Helicopter crash test
 - Vibration testing
 - 3 GA airplane crash tests

Deliverables:
- Recommendations to RTCA/EUROCAE regarding Minimum Operational Performance Standards (MOPS) for 2nd Generation ELTs
Research Summary

- **Historical Performance**
 - ELT success rate estimated to be 25% with TSO C-91 and earlier beacons [1]

- **Current Performance**
 - ATSB estimated success rate at 40-60% with high degree of uncertainty in fitment (69%) [2]
 - Canada DR&D estimated success rate at 74% with high degree of uncertainty due to sufficient ELT data provided in only 13% of cases [3]
 - German BFU summarized 6 cases involving beacon mount failures and cited the antenna connection as the weak link in the system [4]
 - Cospas-Sarsat proceedings discuss the reliability of ELT performance statistics as information is recorded in only 10% of accidents resulting in substantial damage to the aircraft [5]
 - NASA/NTSB special study revealed 58% success rate in TSO-C91a and later ELTs involved in injurious accidents over the period Jan 2009-Mar 2014 and no correlation between performance and aircraft [6]

- **Enhanced Data Collection**
 - NTSB Form 6120.1 has been updated to include additional fields for ELT information

ELT failure is responsible for the loss of more than 1 life per week on average [1]
Findings & Action Plan

• Research revealed similar themes to those reported historically by NASA as well as more contemporary studies by international stakeholders

• Current MOPS falls short of defining requirements that ensure robust systems in a number of areas, including:
 – Vibration
 – Fire/Flame Survivability
 – Automatic Activation
 – Crash Safety
 – System Installation

• NASA will provide research and test data to support improved MOPS in each of the above areas

• A representative sample of GA AF-type ELTs from each vendor represented on RTCA SC-229 will be evaluated
Laboratory Testing

• Crash Safety & Automatic Activation
 – Previously qualified systems have exhibited structural deficiencies in the field, resulting in disconnected antenna due to beacon ejection from its mounting
 – NASA tests have reproduced the behavior by modifying the test parameters to be more representative of actual crash environments and include confirmation of functionality during the crash event

• Vibration
 – Crash sensors have exhibited sensitivity to vibration exposure
 – NASA will evaluate the performance of current systems after exposure to robust vibration environments

• Antenna Cable System
 – No strength requirements exist for the cabling system
 – NASA has performed static and dynamic strength testing and will compare results to cable loads recorded during full-scale crash testing

• Fire
 – Current test duration is shorter than the time required for satellite transmission
 – NASA will test antenna systems for functional performance during fire exposure with and without additional COTS thermal protection
Full-scale Crash Testing

• Series of tests at NASA Langley Research Center’s (LaRC) Landing and Impact Research Facility (LandIR)
 – 1 CH-46E Helicopter Fuselage
 – 3 Cessna 172 Airplanes

• “Severe but survivable” crash conditions

• Live testing of SARSAT system with multiple full ELT systems onboard each test

• Data used to calibrate and validate simulations of additional crash scenarios

Objective: Identify enhanced installation guidance for functionality and crashworthiness of the entire system
Summary

• Several failure modes have been identified that stem, in part, from inadequate performance specifications

• NASA will provide performance-based recommendations to RTCA that will result in significant improvements in 2nd Generation ELTs

Questions?
Backup Charts
References

