2nd Generation ELT Performance Specification Development

Chad M. Stimson, Technical Manager
NASA Langley Research Center
Phone: (757) 864-3787
E-Mail: Chad.M.Stimson@NASA.gov
NASA SAR is supporting RTCA with the goal of making “significant improvement to ELT performance” through a multi-faceted research, analysis and test effort.

<table>
<thead>
<tr>
<th>Research:</th>
<th>Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic and current failure rates and modes</td>
<td>Nonlinear dynamics analysis of severe but survivable airplane crash scenarios</td>
</tr>
<tr>
<td>• Crash data from NTSB and other international sources</td>
<td>• Validate models through test correlation</td>
</tr>
<tr>
<td>• Compare current to historic trends</td>
<td>• Investigate various installation plans</td>
</tr>
<tr>
<td>• Identify previous improvements to avoid duplication of effort</td>
<td></td>
</tr>
<tr>
<td>• Identify primary failure modes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test:</th>
<th>Deliverables:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-based unit testing and installed system crash testing</td>
<td>Recommendations to RTCA/EUROCAE regarding Minimum Operational Performance Standards (MOPS) for 2nd Generation ELTs</td>
</tr>
<tr>
<td>• Crash safety testing</td>
<td></td>
</tr>
<tr>
<td>• Helicopter crash test</td>
<td></td>
</tr>
<tr>
<td>• Vibration testing</td>
<td></td>
</tr>
<tr>
<td>• 3 GA airplane crash tests</td>
<td></td>
</tr>
</tbody>
</table>
Research Summary

• Historical Performance
 – ELT success rate estimated to be 25% with TSO C-91 and earlier beacons [1]

• Current Performance
 – ATSB estimated success rate at 40-60% with high degree of uncertainty in fitment (69%) [2]
 – Canada DR&D estimated success rate at 74% with high degree of uncertainty due to sufficient ELT data provided in only 13% of cases [3]
 – German BFU summarized 6 cases involving beacon mount failures and cited the antenna connection as the weak link in the system [4]
 – Cospas-Sarsat proceedings discuss the reliability of ELT performance statistics as information is recorded in only 10% of accidents resulting in substantial damage to the aircraft [5]
 – NASA/NTSB special study revealed 58% success rate in TSO-C91a and later ELTs involved in injurious accidents over the period Jan 2009-Mar 2014 and no correlation between performance and aircraft [6]

• Enhanced Data Collection
 – NTSB Form 6120.1 has been updated to include additional fields for ELT information

ELT failure is responsible for the loss of more than 1 life per week on average [1]
Findings & Action Plan

- Research revealed similar themes to those reported historically by NASA as well as more contemporary studies by international stakeholders

- Current MOPS falls short of defining requirements that ensure robust systems in a number of areas, including:
 - Vibration
 - Fire/Flame Survivability
 - Automatic Activation
 - Crash Safety
 - System Installation

- NASA will provide research and test data to support improved MOPS in each of the above areas

- A representative sample of GA AF-type ELTs from each vendor represented on RTCA SC-229 will be evaluated
Laboratory Testing

• Crash Safety & Automatic Activation
 – Previously qualified systems have exhibited structural deficiencies in the field, resulting in disconnected antenna due to beacon ejection from its mounting
 – NASA tests have reproduced the behavior by modifying the test parameters to be more representative of actual crash environments and include confirmation of functionality during the crash event

• Vibration
 – Crash sensors have exhibited sensitivity to vibration exposure
 – NASA will evaluate the performance of current systems after exposure to robust vibration environments

• Antenna Cable System
 – No strength requirements exist for the cabling system
 – NASA has performed static and dynamic strength testing and will compare results to cable loads recorded during full-scale crash testing

• Fire
 – Current test duration is shorter than the time required for satellite transmission
 – NASA will test antenna systems for functional performance during fire exposure with and without additional COTS thermal protection
Full-scale Crash Testing

- Series of tests at NASA Langley Research Center’s (LaRC) Landing and Impact Research Facility (LandIR)
 - 1 CH-46E Helicopter Fuselage
 - 3 Cessna 172 Airplanes
- “Severe but survivable” crash conditions
- Live testing of SARSAT system with multiple full ELT systems onboard each test
- Data used to calibrate and validate simulations of additional crash scenarios

Objective: Identify enhanced installation guidance for functionality and crashworthiness of the entire system
Summary

• Several failure modes have been identified that stem, in part, from inadequate performance specifications.

• NASA will provide performance-based recommendations to RTCA that will result in significant improvements in 2nd Generation ELTs.

Questions?
Backup Charts
References

