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ABSTRACT 
Launch vehicle reliability analysis is largely dependent 

upon using predicted failure rates from data sources such 

as MIL-HDBK-217F.  Reliability prediction 

methodologies based on component data do not take into 

account risks attributable to manufacturing, assembly, 

and process controls. These sources often dominate 

component level reliability or risk of failure probability.  

 

While consequences of failure is often understood in 

assessing risk, using predicted values in a risk model to 

estimate the probability of occurrence will likely 

underestimate the risk.  Managers and decision makers 

often use the probability of occurrence in determining 

whether to accept the risk or require a design 

modification.  Due to the absence of system level test 

and operational data inherent in aerospace applications, 

the actual risk threshold for acceptance may not be 

appropriately characterized for decision making 

purposes. This paper will establish a method and 

approach to identify the pitfalls and precautions of 

accepting risk based solely upon predicted failure data. 

This approach will provide a set of guidelines that may 

be useful to arrive at a more realistic quantification of 

risk prior to acceptance by a program.  

INTRODUCTION 

In today’s environment, cost, schedule, and safety risk 

are paramount in the aerospace industry. Many 

companies and government agencies are allowing 

predicted reliability data to be used to determine if a 

component, assembly, system, and ultimately the vehicle, 

meet safety requirements. Typically, Safety engineers 

use subjective methods or they may use quantitative 

methods to assess the likelihood of a specific failure 

scenarios occurrence.  Quantifying the risks would be the 

first choice in assessing risk; however, some programs 

allow the use of predicted failure data to quantify the risk 

accomplished by the modeling of failure scenarios.  

Failure data typically come from MIL-HDBK-217F, 

which is outdated and has been discontinued by the 

Department of Defense (DoD).  The values are generally 

overly optimistic, as can be seen by comparison with 

demonstrated data.  These values are adjusted for the 

specific failure mode distributions that causes a specific 

failure event. These values often misrepresent the actual 

risk when managers are considering accepting or 

rejecting the risk.  In either case, the cost of redesign or 

loss of the asset may represent a significant failure for 

the program.  This paper will examine the differences in 

using predicted vs. demonstrated data methods.  One 

method uses epistemic error factors, and the other uses 

calculated error factors per the formulation found in 

SAPHIRE version 8 [2].  Examining these differences 

will identify the pitfalls and demonstrate the need for 

precautions. 

In addition, testing which is used to validate the product 

is also being reduced to realize even further cost and 

schedule savings, often at the expense of reliability and 

safety.  Decreased electrical, electronic, and electro-

mechanical (EEE) parts grades have also been allowed in 

certain instances.  In other areas, it has been proposed to 

reduce thermal cycling, burn in, and thermal vacuum 

testing to provide even further cost and schedule 

reduction. These measures may actually increase the risk 

of failure by not knowing if the reliability has been met 

as well as allowing infant mortality failures to occur 

while on the launch pad. Unidentified latent failures that 

are undetected due to reduced testing may manifest 

during flight. All of these issues may very well increase 

the overall risk to a point that the true risk is unknown, 

especially when predicted values are used in modeling 

the risk, and uncertainty surrounding the model is now in 

question. 

Precautions should be made aware when using predicted 

data to assess safety risks due to pitfalls of unidentified 

or incorrectly identified failure data and associated 

uncertainty. Predicted data does not take into account 

manufacturing, assembly, and operational processes.  

When quantifying risk, the actual risk reported and used 

in the decision making process may misrepresent both 

the outcome and associated uncertainty. 

The predicted and demonstrated data models utilize 

epistemic and aleatory error factors (EF), which 

represent the uncertainty in each model..  A lognormal 
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distribution is assumed for both models and the resulting 

mean risk and system uncertainties are then compared.   

1  ESTIMATING FAILURE RATES 

1.1 MIL-HDBK-217F 

This approach quantifies failure rates at the component 

level, which is modified, based on a component’s, 

environment, temperature range, and quality. When used 

in similar environments, the differences between system 

applications may be significant.  Correct application by 

the user is a limitation of the prediction method. 

The example model below demonstrates the effect of 

predicted reliability data. 

The Model basis: MIL-HDBK-217F [5] stress method, 

environment is Airborne Uninhabited Fighter (AUF). 

Quality factors are those of the highest level for the 

specific part analyzed.  Temperatures, where applicable, 

are baselined at 130 deg. C, stress loads, where 

applicable, are between 90 and 100%. Devices are 

procured with normal manufacturer’s screening 

consisting of temperature cycling, constant acceleration, 

electrical testing, seal test, and external visual inspection. 

It is assumed that the component manufacturer also 

performs all screens and tests to the applicable MIL-PRF 

[6] or equivalent MIL-STD-883 screening method.  

Component types modeled are CMOS digital gate arrays, 

low frequency diodes, bipolar transistors, resistors and 

capacitors.   

The applicable adjustment factors for the prediction 

model components may be found in MIL-HDBK-217F 

[5]  

The predicted failure rates and MTTF for each 

component is shown in Table 1 

MIL-HDBK-217F Failure Rates 

Component Failure 

Rate 

MTTF 

Digital Gate Array 2.47e-8 40.485,830 
Diode (LF) 4.25e-7 2,350,012 
Transistor 3.53e-7 2,829,562 
Resistors (RCR) 1.42e-7 7,058,767 
Capacitors (CCR) 1.37e-8 72,878,861 

Table 1. 

A representative system fault tree was built using 

SAPHIRE 8 for predicted values as is seen in Figure 2. 

Figure 2 

Predicted Value Fault Tree 

An epistemic error factor value of 8 was selected for all 

components, which were taken from the Data Source 

Classification Application [1], as seen in Table 2. 

Error Factor Data Source Classification Approach[1] 

Data Source Classification Approach 

Source  
Source 

Description 
Source 

Application 
Error 

Factor 

New 
Hardware 

MIL-HDBK-217F 

Same 
Component 

8 

Like Component 9 

Table 2. 

 

 



1.2 Demonstrated Failure Rates 

This approach quantifies failure rates by using same 

components taken from the Quanterion Automated 

Databook using EPRD-2014, NPRD-2016, and where 

applicable FMD-2016 [3].  The same components used 

in the predicted model are selected where several years 

of failure data was found. Adjustments for varying 

environments were adjusted to the AUF environment by 

using MIL-HDBK-338 [4]. The mean values and 

standard deviations were calculated.  The Error Factors 

were calculated using Eq.1. [2]. 

𝐸𝐹 = 𝑒1.645√ln(1 + (𝜎𝑙𝑛 𝜇𝑙𝑛)⁄ 2
)                (1) 

SAPHIRE 8 Error Factor Calculation 

The demonstrated failure rates and MTTF for each 

component are shown in Table 3. 

Demonstrated Failure Rates 

Component Failure 

Rate 

MTTF 

Digital Gate Array 2.93e-6 341,491 
Diode (LF) 2.49e-6 400,267 
Transistor 9.38e-7 1,065,719 
Resistors (RCR) 2.77e-6 360,577 
Capacitors (CRH) 1.06e-6 934,798 

Table 3. 

A representative system fault tree was built using 

SAPHIRE 8 for demonstrated values is seen in Figure 4 

 
Figure 4 

Demonstrated Value Fault Tree 

Demonstrated lognormal uncertainty (EF) was calculated 

using Eq. 1. The values in Table 4, were applied to their 

respective components. 

Demonstrated Error Factors 

Component Error factor 

Digital Gate Array 4.61 

Diode (LF) 4.1 

Transistor 4.09 

Resistors (RCR) 4.67 

Capacitors (CCR) 3.91 

Table 4 

 

1.3 Model Parameters 

Both models were constructed in the same fashion.  

Model logic was based on two parallel strings requiring a 

two of two output logic to achieve functional output.  

Each strings components are in serial with a single 

failure causing a loss of function for that string.  The 

mission time is one quarter of an hour.  All components 



were correlated to each individual type.  Fifty thousand 

Monte Carlo trials were ran with identical seed values. 

1.4 System Uncertainty Calculations 

The system level uncertainty for each model type was 

then computed based upon the method in Figure 5 [1].  .  

Quantitatively, the error factor represents the spread of 

the lognormal distribution about the median.  The Error 

Factor is represented as the 95th divided by the median 

[1]. System uncertainty for each model type is based on 

this method.  

 

 
Figure 5. 

Lognormal Probability Density Function 

2 Results 

The two models were then solved in SAPHIRE 8 by 

performing Monte Carlo trials, the results of which were 

used to calculate the system level uncertainty.  The end 

results were then compared with the results as shown in 

Table 5. 

Predicted vs. Demonstrated results 

Model Type Risk (1/N) Uncertainty 

Predicted 1/2,111,041 4.08 

Demonstrated 1/196,657 2.3 

   

Table 5. 

3  CONCLUSION 

As one can see, the results in Table 5 are vastly different.  

The risk value is 11 times less for the predicted model.  

If used for a quantitative assessment when considering 

the risk in a decision scenario, the risk may be 

misrepresented.  In the case of uncertainty, the dispersion 

of the risk is two times greater in the predicted model.  

This indicates that demonstrated data lowers uncertainty 

and predicted uncertainty range may necessitate further 

effort to collect additional data. 

This difference gives rise to identify the pitfalls and 

precautions when developing quantitative models, which 

are used to assess and accept risk.   

3.1  Pitfalls 

The pitfalls one may experience are: 

 Predicted failure data are overly optimistic. 

 Predicted failure data does not take into account 

manufacturing, assembly and quality process 

controls, which are primary failure drivers. 

 Predicted failure data may mislead managers 

into accepting a level of risk that is not 

commensurate with the actual risk. 

 Predicted data should not be used to assess 

system reliability against reliability 

requirements. 

3.2  Precautions 

Precautions when using predicted failure data. 

 If a concerted effort to obtain realistic data is 

not done, the resulting risk model may not be 

valid. 

 Failure databases are difficult to locate and may 

be more difficult to obtain permission to access. 

 Equal quality components must be used in 

developing risk models. 

 Evaluate and adjust environments, if necessary. 

 The source of data must be documented for 

traceability. 

Obtaining valid data to perform risk modeling requires 

an understanding of the nature of the problems in 

obtaining and analyzing data to be used in modeling a 

system or in performing a system analysis to determine if 

the risk of a particular failure scenario is worth 

accepting, or if a redesign or system modification is 

warranted. 

4 Summary 

System design is constrained by Safety, Reliability, and 

Quality requirements as well as design standards. The 

purpose being to assure safety, which is generally related 

to quality of product, design, and testing.  

These bounds are where the risks lie, and must be fully 

recognized, understood, minimized, and eventually 

accepted or redesigned to a level, which then meets 

acceptable risk. 

As programs and projects proceed, risks are accepted at 

these bounds. The bounds over time become eroded by 

the acceptance of risk, and at some time, the aggregate 

risks may well exceed these bounds.  This may result in a 

falsely perceived level of confidence, and allow a project 

to proceed to a state of potential disaster, which may 

result in a loss of life and physical property. 
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