Lunar Impact Monitoring

Rob Suggs, Ph.D.

NASA Marshall Space Flight Center
Engineering Directorate/EV44 and Meteoroid Environment Office

rob.suggs@nasa.gov

Space Environments Virtual Seminar
May 2016
Outline

• Observational Technique
• Photometric Calibration and Energy Calculation
• Meteoroid Flux
• A Crater is Born
"NASA Apollo 17 transcript" discussion is given below (before descent to lunar surfac

03 15 38 09 (mission elapsed time)
(10 Dec 1972, 21:16:09 UT – possible Geminid)

LMP Hey, I just saw a flash on the lunar surface!

CC Oh, yes?

LMP It was just out there north of Grimaldi [mare]. Just north of Grimaldi. You might see if you got anything on
your seismometers, although a small impact probably would give a fair amount of visible light.

CC Okay. We'll check.

LMP It was a bright little flash right out there near that crater. See the [sharp rimed] crater right at the [north] edge
of [the] Grimaldi [mare]? Then there is another one [i.e., sharp rimed crater] [directly] north of it [about 50km]-
fairly sharp one north of it. [That] is where there was just a thin streak [pin prick] [flash?] of light.

CC How about putting an X on the map where you saw it?
9 Years of Observations

- The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation Program
 - Needed a model/specification for impact ejecta risk
- Work continued by the Meteoroid Environment Office after Constellation cancellation
 - Lunar impact monitoring allows measurement of fluxes in a size range not easily observed (10s of grams to kilograms)
- A paper published in Icarus reported on the first 5 years of observations
Observation Summary

394 impacts since 2005

Subset of 126 flashes on photometric nights to 2011
141 hrs evening - 81 flashes
126 hrs morning - 45 flashes
Average: 2.1 hrs/flash
evening/morning = 1.6:1

Evening observations
Morning observations

Photometric error ~0.2 mag
When We Observe

• Initially, it was anytime the glare from the sunlit face did not completely wash out the earthshine face
 – Typically between 10% illuminated (crescent) and 50% (quarter)
• Impact rate is higher during meteor showers and we are focusing on those now after 7 years of observing anytime
• Observe from nautical twilight to moonset – evening
• Observe from moonrise to nautical twilight – morning
• Generate a schedule each year with dates, times, and shower visibilities
Camera Field of View and Processing

Approximately 20 arcminutes horizontal, 3.8x10^6 km^2 on the Moon

Approximately 1m effective focal length with ½ inch CCD

Good compromise between collecting area and glare

Use stars for photometric calibration

Two telescopes are needed to discriminate cosmic ray flashes in the CCD

A third telescope 100 km away helps discriminate orbital debris sun-glints

Software finds the flashes and a human correlates them
Automated Lunar and Meteor Observatory (MPC H58)

- Telescopes
 - 14” (0.35m)
 - Meade, Celestron
 - Paramount (ME, MX)
- Detectors
 - Sony HAD EX – based video
 - Gamma=0.45, man. gain, shutter off
Operator position
12/15/2006
09:17:39.336
33 ms
m_R = 7.4
0.09 kg
Geminid (35 km/s)

11/17/2006
10:56:34.820
66 ms
m_R = 7.0
0.03 kg
Leonid (71 km/s)

11/03/2008
00:11:06.144
100 ms
m_R = 7.7
0.1 kg
S. Taurid (27 km/s)

04/22/2007
03:12:24.372
133 ms
m_R = 6.7
0.08 kg
Lyrid (49 km/s)
Video
Calibration: Magnitude Equation

Parameters determined by observing stars with known magnitudes

\[R = -2.5 \log_{10}(S) - k' X + T (B-V) + ZP \]

- \(R \) = Johnson-Cousins R magnitude
- \(k' \) = extinction coefficient
- \(X \) = airmass (zenith = 1.0)
- \(T \) = color response correction term
- \((B-V) \) = color index
- \(ZP \) = zero point for the night

\(S = DN^{1/0.45} \) if camera gamma set to 0.45 which extends dynamic range (faintest flash to saturation)

\(DN \) = pixel value 0 – 255
Sony HAD EX response compared to Johnson-Cousins filters
Mass of the impactor assuming impact speed (shower or sporadic)

Luminous efficiency

\[\eta = 1.5 \times 10^{-3} \exp\left(-9.3^2/v^2\right) \]

\[v = \text{impact speed in km/s} \]

Kinetic Energy

\[KE = E_{\text{lum}} / \eta \]

Mass

\[M = 2 \cdot KE / v^2 \]
Luminous Efficiency

\[\eta_{\text{cam}} = 1.5 \times 10^{-3} e^{-9.3/ V^2} \]

From Moser et al. (2011)
The flux to a limiting energy of 1.05×10^7 J is 1.03×10^{-7} km$^{-2}$ hr$^{-1}$
Shower Correlation
The flux to a limiting mass of 30 g is 6.14×10^{-10} m$^{-2}$ yr$^{-1}$.
Comparison with Grün Flux

• For our completion limit of 30g we saw 71 impacts for a flux of
 \[6.14 \times 10^{-10} \text{ m}^{-2} \text{ yr}^{-1}\]
• The Grün et al. (1985) flux above a mass of 30g is
 \[7.5 \times 10^{-10} \text{ m}^{-2} \text{ yr}^{-1}\]
Impact Flux at Earth Compared with Other Measurements

After Brown et al. (2002)
with adjustments for gravitational focusing and surface area of Earth at 100km altitude
Bright flash on 17 March 2013

17 Mar 2013
03:50:54.312
1.03 s
m_R = 3.0
16 kg
Virginid

Flash info
Detected with two 0.35 m telescopes
Watec 209H2 Ult monochrome CCD cameras
 – Manual gain control
 – No integration
 – \(\Gamma = 0.45 \)
Interlaced 30 fps video
Saturated → needed saturation correction!
Peak R magnitude saturation correction

Photometry performed using comparison stars (see Suggs et al. 2014)

Saturated
Peak $m_R = 4.9$
UNDERESTIMATED!

CORRECTION:
2D elliptical Gaussian fit to the unsaturated wings
Peak $m_R = 3.0 \pm 0.4$
Luminous energy $= 7.1^{+4.9}_{-2.4} \times 10^6$ J
Favorable Virginid radiant geometry

Pink indicates the portion of the moon visible to the radiant. Impact angle ~56° from horizontal.
Mapping the impact location

ArcMap was used to georeference the lunar impact following the geolocation workflow.

Refraction corrected

Nominal predicted crater position

20°.6644 N, 24°.1566 W

Refra corr:

20°.6842±0.2585 N, 24°.2277±0.2881 W
Impact crater found by LRO!
Robinson et al. (2014)

March 17th Impact

Features
• Fresh, bright ejecta
• Circular crater
• Asymmetrical ray pattern

Crater info
• Rim-to-rim diameter = 18 m
• Inner diameter = 15 m
• Depth ≈ 5 m

Actual crater location
• 20.7135°N, 24.3302°W

Impact Constraints
→ Circular crater, impact angle constrained $\theta_h > 15^\circ$
→ Ejecta gives no azimuth constraint (Robinson, personal comm.)
Comparison of geolocation results to obs crater location

<table>
<thead>
<tr>
<th>Method</th>
<th>Longitude (° W)</th>
<th>Latitude (° N)</th>
<th>Angular distance from observed (°)</th>
<th>Surface distance from observed (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough workflow</td>
<td>23.922</td>
<td>20.599</td>
<td>0.39875</td>
<td>12.096</td>
</tr>
<tr>
<td>Refined workflow</td>
<td>24.1566</td>
<td>20.6644</td>
<td>0.169665</td>
<td>5.1469</td>
</tr>
<tr>
<td>Refined, with refraction correction</td>
<td>24.2277</td>
<td>20.6842</td>
<td>0.100261</td>
<td>3.0415</td>
</tr>
<tr>
<td>LRO observed</td>
<td>24.3302</td>
<td>20.7135</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Map with crater locations and angular distances](image)
Transient crater diameter estimates

Assumptions: Virginid $v_{\text{g foc}}$=25.7 km/s, θ_h = 56°; ρ_t = 1500 kg/m3 (regolith)

![Table showing transient crater diameter estimates]

- **Gault’s crater scaling law** (Gault 1974)
 - $\eta = 5 \times 10^{-4}$
 - KE: 14×10^9 J
 - Mass: 42 kg
 - ρ_p: 1800 kg/m3
 - D_{calc}: 18.5 m
 - D_{obs}: 15 m
 - % Err: 23%
 - $\eta = 1.3 \times 10^{-3}$
 - KE: 5.4×10^4 J
 - Mass: 16 kg
 - ρ_p: 1800 kg/m3
 - D_{calc}: 15.3 m
 - D_{obs}: 15 m
 - % Err: 2%

- **Holsapple’s online calculator** (Holsapple 1993)
 - $\eta = 5 \times 10^{-4}$
 - KE: 14×10^9 J
 - Mass: 42 kg
 - ρ_p: 1800 kg/m3
 - D_{calc}: 12.2 m
 - D_{obs}: 15 m
 - % Err: 19%
 - $\eta = 1.3 \times 10^{-3}$
 - KE: 5.4×10^4 J
 - Mass: 16 kg
 - ρ_p: 1800 kg/m3
 - D_{calc}: 9.5 m
 - D_{obs}: 15 m
 - % Err: 37%

Two example values of η from the literature yield large ranges for KE and mass. Consequently, model results are highly dependent on luminous efficiency η.

Assuming a velocity dependent $\eta = 1.3 \times 10^{-3}$, these model results are consistent with the observed crater diameters.

$D_{\text{calc}} = 8$-18 m transient crater

$D_{\text{calc}} = 10$-23 m rim-to-rim

$D_{\text{obs}} = 15$ m inner (‘transient’)

$D_{\text{obs}} = 18$ m rim-to-rim
Summary

• 10 years of routine observations have yielded nearly 400 lunar impact flashes confirmed by at least 2 telescopes
• Photometric calibration of the flashes and determination of luminous efficiency give impact energies
• Impact energy distribution compares favorably with other measurements
• The large impact of 17 March 2013 created a new crater observed by LRO – estimates of crater size were surprisingly close
• Ground-based observations of lunar impacts with accurate ejecta models can give us a handle on ejecta risk to lunar surface operations
References

Luminous energy from impact peak magnitude

\[E_{\text{lum}} = f_\lambda \Delta \lambda \, f \, \pi \, d^2 \, t \quad \text{Joules} \]

- \(E_{\text{lum}} \) = luminous energy
- \(\Delta \lambda \) = filter half power width, 1607 Ångstroms for R
- \(f = 2 \) for flashes near the lunar surface
- \(d \) = distance from Earth to the Moon
- \(t \) = exposure time, 0.01667 for a NTSC field

\[f_\lambda = 10^{-7} \times 10^{-2} \left(-R + 21.1 + zp_R \right) / 2.5 \quad \text{J cm}^{-2} \text{s}^{-1} \text{Å}^{-1} \]

- \(R \) = the R magnitude
- \(zp_R = 0.555 \), photometric zero point for R (not the same as \(ZP \) in magnitude equation) from Bessell et al. (1998)
Correction from HAD EX to R filter vs blackbody temperature
R-EX replaces $T(B-V)$

Theoretical peak flash temperature 2800K Nemtchinov et al. (1998)
Filter and camera responses depend on color of object

Peak of 2800K BB
Limiting Magnitude

Flash Magnitude Distribution

Flash Magnitude Cumulative Distribution
Limiting Mass
4. Georeference flash image

Final georeferenced impact image
6. Determine flash location

- Input flash location \((\bar{x}_f', \bar{y}_f')\) to ArcMap’s “Go to XY” tool

- Read & record selenographic coordinates \((\lambda, \varphi)\) transformed by ArcMap

- Place marker at flash location, add point to database and shapefile
ArcMap was used to georeference the lunar impact 3 times, at peak brightness and late impact.
Mapping the impact location

ArcMap (ArcGIS 10) was used to georeference the lunar impact video.
Results of several attempts with different features and frames.

Average location: 20.599° ± 0.172° N, 23.922° ± 0.304° W
Equipment

- Telescopes – 14 inch (0.35m), have also used 0.5m and 0.25m
- Camera – B&W video 1/2inch Sony HAD EX chip (Watec 902H2 Ultimate is the most sensitive we have found)
- Digitizer – preferably delivering Sony CODEC .AVI files if using LunarScan (Sony GV-D800, many Sony digital 8 camcorders, Canopus ADVC-110)
 - This gives 720x480 pixels x8 bits
- Time encoder – GPS (Kiwi or Iota)
 - Initially used WWV on audio channel with reduced accuracy
- Windows PC with ~500Gb fast harddrive (to avoid dropped frames)
 - Firewire card for Sony or Canopus digitizers
Celestron 14

Finger Lakes focuser

Pyxis rotator
Optec 0.3x
focal reducer

Watec 902H2
Ultimate
Software we have used

• WinDV for recording windv.mourek.cz
• LunarScan detection software (Gural will discuss) www.lunarimpacts.com/lunarimpacts.htm
• VirtualDub for slicing out relevant sections of video and converting to “Old AVI” for reading into Limovie www.virtualdub.org/download.html
• Limovie for checking photometry of flashes and calibration stars www005.upp.so-net.ne.jp/k_miyash/occ02/limovie_en.html
• MaximDL can convert video segments to FITS
 – Don’t use the aperture photometry tool until after each pixel is gamma corrected by $S = DN^{1/0.45}$ if camera gamma set to 0.45
• Python and Pyraf may be used for aperture photometry www.stsci.edu/institute/software_hardware/pyraf/current/download