Combined Experimental and Computational Aeroacoustic Analysis of an Isolated UAV-Scale Propeller

Nikolas S. Zawodny
D. Douglas Boyd Jr.
Randolph H. Cabell

NASA Langley Research Center

Acoustics TWG 2015
04/21/2015
Acknowledgements

• QFF Support Team
 – D. Stead, D. Kuchta, J. Moen

• Members of Acoustics Branches & NIA
 – S. Rizzi, A. Christian, F. Grosveld, J. Stephenson, M. Rafaelof

• Members of ASAB & NGCS Branches
 – W. Fredericks, P. Rothhaar
• Introduction
 – VLHA Motivations
 – Objectives of Current Study

• Technical Approach
 – Experimental Setup
 – Predictive Approach

• Preliminary Acoustic Analysis
 – Aerodynamic vs. Motor Noise
 – Predictive Comparisons

• Remarks and Future Work Ideas
Introduction

VLHA Motivations

• **Vertical Lift Hybrid Autonomy (VLHA) goal:**

 Show feasibility of applying current conceptual design tools to small vertical lift unmanned aerial vehicles (UAVs)

• **Within acoustics discipline:**
 - Assess current noise prediction tools
 - Flight tests (F. Grosveld)
 - Test stand measurements
 - Improve tools as necessary
 - Assess human response through prediction-based auralizations
 - Apply tools to develop noise control solutions and quiet designs
Introduction

Objectives of Current Study

- Baseline acoustic characterization
 - Perform on simple, canonical propeller-motor combination
 - Attempt to identify noise source generation mechanisms

- Assess current high-fidelity noise prediction capabilities
 - CFD coupled with FW-H acoustic analogy
 - Physics-based; fewer “knobs” to tweak as compared with certain lower fidelity models
Technical Approach

Experimental Setup

• Isolated propeller-motor apparatus
 – Installed in Structural Acoustic Loads and Transmission (SALT) anechoic facility
 – Blades located 6’ (∼15R) above floor wedge tips

• Far-field microphones
 – Qty. 5 measurement locations (Δθ = 22.5 deg.)
 – Two types:
 • GRAS ½” diam. diffuse field
 • B&K ¼” diam. free-field

• Motor and propeller blades
 – Components of DJI’s Phantom 2 quadcopter*
 – Two blade types:
 • Those provided by DJI (manufacturer)
 • Carbon fiber (CF) replicas

*NASA does not endorse DJI products. Product was selected based on cost and parts availability.
Technical Approach

Experimental Setup (contd.)

- Simultaneous measurements
 - Microphones
 - Thrust (1-D load cell)
 - Motor RPM (optical sensor and tachometer)
 - Support rod deflection (via single-point LV system)
 - Unsteady current (between ESC and motor)
Technical Approach

Predictive Approach

• CFD Analysis
 – Used OVERFLOW 2 unsteady RANS solver
 – Performed on isolated UAV blades (hub excluded)
 – Approximate hover condition
 – Represents a “first pass” CFD prediction

• Acoustic Predictions
 – Unsteady blade surface pressures input into FW-H acoustic analogy
 – Qty. 10 converged revolutions used
Technical Approach

Important Notes for Predictions

• Blade geometries
 – Surface mesh generation of ONLY DJI-provided blade
 – Coordinate system unknown
 – CFD mesh result of “best guess” of correct orientation
 – Perfect “mirror image” blade assumption
 – Blade deflections unaccounted for with current CFD methodology

• Currently planning 2nd pass at scanning and surface mesh generation of BOTH blade sets
Preliminary Acoustic Analysis

Aerodynamic vs. Motor Noise

• Baseline case:
 – 5400 RPM (hover)
 – DJI blades
 – “Motor Only” denotes unloaded data

• Acoustic Spectra
 – Rich with BPF and associated harmonics
 – Evidence of motor noise contamination at discrete tones
 – Effects of loaded motor noise???
Preliminary Acoustic Analysis

Acoustic Far-Field Characteristics

- Far-field test (OASPL)
 - Excellent agreement b/w pred. & expt.
 - Radial distance of 10R selected as reasonable location for experiments

- BPF acoustic amplitudes
 - Reasonable agreement b/w prediction and DJI blades
 - Best agreement at $\theta = \pm 45^\circ$
 - Maximum discrepancy < 1.5 dB
 - CF blades show larger discrepancies for negative elevation angles
Preliminary Acoustic Analysis
Spectral Comparisons (DJI Blades)

• Notes:
 – BPF = 180 Hz
 – Only tonal amplitudes of BPF harmonics shown
 – Grayed out region represents frequency range of prominent unloaded motor noise
Notes:
- BPF = 180 Hz
- Only tonal amplitudes of BPF harmonics shown
- Grayed out region represents frequency range of prominent unloaded motor noise
Remarks & Future Work Ideas

- **Experiments**
 - Have provided insight into different possible noise source mechanisms (i.e. prop noise, motor noise)
 - Tonal and broadband components of noise; modeling of both a worthwhile endeavor
 - Not representative of sound associated with full vehicle in flight
 - Develop method of measuring/isolating motor noise under loading
 - Plan to test multiple props in controlled environment (with vs. without airframe?)
 - Test effects of varying RPM between motors (induce beat frequencies)

- **Predictions**
 - Have started with CFD-based methodology
 - First attempt shows promise, reasonable comparisons with experiments
 - Developing process flow for incorporation of prediction results into a UAV flyover auralization
 - Plan on performing 2nd pass at generating accurate blade surface mesh
 - Can look into using lower fidelity tools (i.e. CAMRAD II) in place of CFD