Combined Experimental and Computational Aeroacoustic Analysis of an Isolated UAV-Scale Propeller

Nikolas S. Zawodny
D. Douglas Boyd Jr.
Randolph H. Cabell

NASA Langley Research Center

Acoustics TWG 2015
04/21/2015
Acknowledgements

• QFF Support Team
 – D. Stead, D. Kuchta, J. Moen

• Members of Acoustics Branches & NIA
 – S. Rizzi, A. Christian, F. Grosveld, J. Stephenson, M. Rafaelof

• Members of ASAB & NGCS Branches
 – W. Fredericks, P. Rothhaar
Outline

• **Introduction**
 – VLHA Motivations
 – Objectives of Current Study

• **Technical Approach**
 – Experimental Setup
 – Predictive Approach

• **Preliminary Acoustic Analysis**
 – Aerodynamic vs. Motor Noise
 – Predictive Comparisons

• **Remarks and Future Work Ideas**
Introduction

VLHA Motivations

- **Vertical Lift Hybrid Autonomy (VLHA) goal:**

 \textit{Show feasibility of applying current conceptual design tools to small vertical lift unmanned aerial vehicles (UAVs)}

- **Within acoustics discipline:**

 - Assess current noise prediction tools

 - Flight tests (F. Grosveld)

 - Test stand measurements

 - Improve tools as necessary

 - Assess human response through prediction-based auralizations

 - Apply tools to develop noise control solutions and quiet designs
Introduction

Objectives of Current Study

• Baseline acoustic characterization
 – Perform on simple, canonical propeller-motor combination
 – Attempt to identify noise source generation mechanisms

• Assess current high-fidelity noise prediction capabilities
 – CFD coupled with FW-H acoustic analogy
 – Physics-based; fewer “knobs” to tweak as compared with certain lower fidelity models
Technical Approach

Experimental Setup

- Isolated propeller-motor apparatus
 - Installed in Structural Acoustic Loads and Transmission (SALT) anechoic facility
 - Blades located 6’ (≈ 15R) above floor wedge tips

- Far-field microphones
 - Qty. 5 measurement locations (Δθ = 22.5 deg.)
 - Two types:
 - GRAS ½” diam. diffuse field
 - B&K ¼” diam. free-field

- Motor and propeller blades
 - Components of DJI’s Phantom 2 quadcopter*
 - Two blade types:
 - Those provided by DJI (manufacturer)
 - Carbon fiber (CF) replicas

*NASA does not endorse DJI products. Product was selected based on cost and parts availability.
Technical Approach

Experimental Setup (contd.)

- Simultaneous measurements
 - Microphones
 - Thrust (1-D load cell)
 - Motor RPM (optical sensor and tachometer)
 - Support rod deflection (via single-point LV system)
 - Unsteady current (between ESC and motor)
Technical Approach

Predictive Approach

- CFD Analysis
 - Used OVERFLOW 2 unsteady RANS solver
 - Performed on isolated UAV blades (hub excluded)
 - Approximate hover condition
 - Represents a “first pass” CFD prediction

- Acoustic Predictions
 - Unsteady blade surface pressures input into FW-H acoustic analogy
 - Qty. 10 converged revolutions used
Technical Approach

Important Notes for Predictions

• Blade geometries
 – Surface mesh generation of ONLY DJI-provided blade
 – Coordinate system unknown
 – CFD mesh result of “best guess” of correct orientation
 – Perfect “mirror image” blade assumption
 – Blade deflections unaccounted for with current CFD methodology

• Currently planning 2nd pass at scanning and surface mesh generation of BOTH blade sets
Preliminary Acoustic Analysis
Aerodynamic vs. Motor Noise

• Baseline case:
 – 5400 RPM (hover)
 – DJI blades
 – “Motor Only” denotes unloaded data

• Acoustic Spectra
 – Rich with BPF and associated harmonics
 – Evidence of motor noise contamination at discrete tones
 – Effects of loaded motor noise???
Preliminary Acoustic Analysis
Acoustic Far-Field Characteristics

- Far-field test (OASPL)
 - Excellent agreement b/w pred. & expt.
 - Radial distance of 10R selected as reasonable location for experiments

- BPF acoustic amplitudes
 - Reasonable agreement b/w prediction and DJI blades
 - Best agreement at $\theta = \pm 45^\circ$
 - Maximum discrepancy < 1.5 dB
 - CF blades show larger discrepancies for negative elevation angles
Preliminary Acoustic Analysis
Spectral Comparisons (DJI Blades)

• Notes:
 – BPF = 180 Hz
 – Only tonal amplitudes of BPF harmonics shown
 – Grayed out region represents frequency range of prominent unloaded motor noise
Preliminary Acoustic Analysis

Spectral Comparisons (CF Blades)

• Notes:
 – BPF = 180 Hz
 – Only tonal amplitudes of BPF harmonics shown
 – Grayed out region represents frequency range of prominent unloaded motor noise
Remarks & Future Work Ideas

• Experiments
 – Have provided insight into different possible noise source mechanisms (i.e. prop noise, motor noise)
 – Tonal and broadband components of noise; modeling of both a worthwhile endeavor
 – Not representative of sound associated with full vehicle in flight
 – Develop method of measuring/isolating motor noise under loading
 – Plan to test multiple props in controlled environment (with vs. without airframe?)
 – Test effects of varying RPM between motors (induce beat frequencies)

• Predictions
 – Have started with CFD-based methodology
 – First attempt shows promise, reasonable comparisons with experiments
 – Developing process flow for incorporation of prediction results into a UAV flyover auralization
 – Plan on performing 2nd pass at generating accurate blade surface mesh
 – Can look into using lower fidelity tools (i.e. CAMRAD II) in place of CFD