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Incorrect runway problem
Over 500 incidents since 1999 (FAA)

No injuries or fatalities,  but close calls

Geolocation technologies
Radio (e.g. VOR)

GPS

Gyros (inertial) 

Human vision

Significance
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Plane lands at wrong 

West Virginia Airport; 

No one injured

Boeing 747 lands 

at wrong airport 

in Kansas

Source: FAA



Possible: Warning of Incorrect Landing
Night Approaches at 3 Airports – Very Strong Signal 
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4G7 23
Fairmont WV

KCKB 21
Bridgeport WV

FRA 25L
Frankfurt DE

Frankfurt Bridgeport Fairmont

Source: NASA



Hypothesis assumptions and predictions

For rigid objects and fixed scenes, 
current machine vision technology is 
capable of identifying imagery 
rapidly and with specificity 
over a modest range of camera 
viewpoints and scene illumination. 
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Rigid objects Runway video is recent – no major 
construction

Fixed scenes No snow cover, full foliage

Variation due to atmospheric turbidity -
rain and fog in some approaches

Modest viewpoint change Reject “cross-ways flyover” data

Modest illumination change No dawn/dusk flights: two illumination 
variants (day and night). 

Source: NASA



Hypothesis assumptions and predictions

For rigid objects and fixed scenes, 
current machine vision technology is 
capable of identifying imagery 
rapidly and with specificity 
over a modest range of camera 
viewpoints and scene illumination. 
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Rapid Yes:  ~10fps for most tests

Specific Yes:  if the statistics are done correctly

“Stretch” prediction

Repeatable Only for • same illumination (day vs. night)

• same sensor is used 

• visibility was good

Source: NASA



Data Prep

Raw videos

resolution: visible - 1000x700 resolution or better
infrared - 640x480

frame rate: 30 frames per second

Flights rejected

perpendicular flyovers

very distant views

several from Google Earth

several from simulators
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19 videos, 9 locations
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Approach Video Runway Band Time Weather
Way

points

Refs/

waypoint
4G7_23_night 1 night clear 3 4,4,4
EDDF_25L_night 2 night clear 3 4,4,4
KAVC_01_fog_S 3 * day fog/rain 3 2,2,2
KAVC_01_fog_SE 3 * day fog/rain 2 1,1
KCID_27_LW 4 * LW day fog/snow 6 4,4,4,4,4,4
KCID_27_SW 4 * SW day fog/snow 6 4,4,4,4,4,4
KCID_27_VIS 4 * day fog/snow 8 4,4,4,4,4,4,4,4
KCID_27_LW_night 4 * LW night clear 5 4,4,4,4,4
KCID_27_SW_night 4 * SW night clear 4 4,4,4,4
KCID_27_VIS_night 4 * night clear 5 4,4,4,4,4
KCKB_21_night  5 night clear 5 4,4,4,4,4
KLAS_25L_LW_night 6 * LW night clear 4 4,4,4,4
KLAS_25L_SW_night 6 * SW night clear 7 4,4,4,4,4,4,4
KLAS_25L_VIS_night 6 * night clear 6 4,4,4,4,4,4
KLFI_08_S  7 * day clear 3 4,4,4
KLFI_08_W 7 * day clear 4 4,4,4,4
KLFI_08_fog_NW 7 * day fog/rain 3 1,1,3
KLFI_26_rain 8 day fog/rain 5 4,4,4,4,4

KPHF_25 9 day clear 3 4,4,4

Total 9 85 321



Waypoints and Epochs
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Bayesian Probability Model

Epoch e is a proxy for location; location is unknown by default.
“Unless one of the images I contain is matched in this frame, my 
probability is zero.      Every match of one of the images that I contain 
increases my probability towards one.”

𝑃 𝑒𝑡 = 1 −  

𝑖=1

𝑘

1 − 𝑃 𝑒 𝑅𝑖 ∙ 𝑀𝑖,𝑡

Precompute:

Compute on the fly:

KCID_27_SW_night
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Bayesian Probability Model

4G7 23
Fairmont WV

KCKB 21
Bridgeport WV

FRA 25L
Frankfurt DE

Frankfurt Bridgeport Fairmont

0.999 0.954 0.997

Source: NASA
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How to Represent Concisely?
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0.9 ≤  p ≤ 1.0

0.8 ≤  p < 0.9

0.7 ≤  p < 0.8

0.6 ≤  p < 0.7

0.5 ≤  p < 0.6

0.4 ≤  p < 0.5

0.3 ≤  p < 0.4

0.2 ≤  p < 0.3

0.1 ≤  p < 0.2

0.0 ≤  p ≤ 0.1 
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Results: Specificity

Approach

Plane lands at wrong 

West Virginia Airport; 

No one injured

Estimated vs. True Location

0.9 ≤  p ≤ 1.0

0.8 ≤  p < 0.9

0.7 ≤  p < 0.8

0.6 ≤  p < 0.7

0.5 ≤  p < 0.6

0.4 ≤  p < 0.5

0.3 ≤  p < 0.4

0.2 ≤  p < 0.3

0.1 ≤  p < 0.2

0.0 ≤  p ≤ 0.1 



Approach
4G7_23

EDDF_25L

KAVC_01

KCID
_27

KCKB_21

KLAS_25L

KLFI_
08

KLFI_
26

KPHF_25

No Signal
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Results: Specificity (High Pass)
Estimated vs. True Location
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KLFI_08_fog_NW
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Results: Repeatability

Approach

Estimated vs. True Approach



Cross-matching between visible and SWIR

KCID_27_VIS 

KCID_27_SW 
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KCID_27_SW 



Conclusions

Rapid 

Specific  

Repeatable  

* Robust if illumination (day vs. night) and sensor are the same. 

* Both specificity and repeatability degraded in poor weather. 

Surprise result: cross-sensor repeatability (visible <-> SWIR)

Geolocation via real-time comparison of cockpit
video to a database is feasible, as long as 

• the database contains imagery from the 
same time of day and 

• the weather is clear at the time of the flight. 
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For rigid objects and fixed scenes, current machine 
vision technology is capable of identifying imagery 

rapidly and with specificity 

over a modest range of camera viewpoints 
and scene illumination. 

Source: NASA



Conclusions Applications

Geolocation validation and verification is already possible:
GPS – most of the approach
Inertial Guidance – all of the approach

Machine vision may (for clear flight conditions):
supplement these or
provide the same capability at lower cost, 

though the certification cost is a significant barrier to adoption.  

The limitations of machine vision geolocation in poor weather ensure that 
it cannot be the sole backup navigational technology. 

Tests of its effectiveness with weather-penetrating sensors could 
overcome this limitation. 

Anticipated over 15 years ago. Machine vision is now capable and compact 
enough to pursue this.
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Backup
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Literature Review (abbreviated)
Edge detection

Huertas et al. in 1990 used localized edge detection and thresholding to outline runways and create 
location-specific image templates for use in an expert system [12; see also 16]. 

Hough transform

Fleming and his collaborators reviewed the literature through 2004 [13] (including work that 
harnessed a key innovation, the Hough transform) and applied the Hough transform to runway 
imagery, using stereo ranging to estimate the airplane viewpoint and landing distance [14]. 
Independently and contemporaneously, Shang and Shi [15] took a similar approach, using 
monocular perspective analysis instead of stereo analysis to estimate the landing geometry. 

Primitive learning

In his Master’s thesis, Zongur [17] added a machine learning layer to previously applied techniques 
to recognize airports from orbital imagery. 

Modern machine vision

Medioni and his colleagues at USC and Honeywell [18] used a new class of robust feature detector 
[2] and homographic perspective transformation to track runways in flight video; with image 
stabilization and image differencing they could determine if a runway was free of hazardous objects 
during the landing approach. Their application of the scale-invariant SIFT front end in 2009 
represents a qualitative improvement in robustness in machine vision for aeronautics -- we use a 
performance-optimized variant (SURF [23]) in this study. 

Next generation

A team at EPFL in 2014 applied methods at the current state of the art of machine vision to 
determine the boundaries of alternate landing sites such as agricultural fields in real time [20].
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Epochs are containers of probability
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KMEM_09_VIS_night

These 4 reference images
define the epoch

And these 12 images
(and likely more)
have probability within
the epoch



Conclusions

Aim of this study: explore the limitations of current 
machine vision technology, as applied to airborne 
geolocation, with realistic runway approach video taken 
in a variety of flight conditions. Our expectations:

• Rapid results

• Specific results

• Stability only for rigid objects

• Stability only for fixed scenes

• Stability only with modest change in illumination 

• Stability only with modest change in viewpoint 

Overall, the results met these expectations.
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Conclusions Speed, Stability

Rapid results Linux computer with 16 CPUs and 4 GPUs -- 10 fps

Specific results As long as the flight conditions did not depart from the key 

constraints (rigid objects, fixed scenes, modest variation in illumination 

and viewpoint), location was determined with excellent specificity.

Rigid objects This constraint was maintained strictly throughout the study, 

in the sense that a clear runway or a patch of landscape viewed from the 

air is a fixed object. 

For example, we did not test cases with obstacles on the runway, or cases 

in which heavy winds cause trees in the landscape to move noticeably. 
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Conclusions Scene Variation
The “fixed scene” constraint was varied in two ways. 

1. In clear conditions we allowed minor changes within the scene: the moving vehicles. 
They had no discernable effect on the results. 

2. A change in air turbidity is in essence a scene change. Four video approaches in fog/rain. 
Specificity was superb even with this violation of the fixed scene constraint. However, the 
constancy of specificity throughout the flight, was degraded. Contrast:

• EDDF_25L_night  -- strong location nearly 100% of frames 

• KAVC_01_fog_S   -- strong location only 20% of frames

At first we suspected that constancy of location was degraded due to methodology, i.e., 
poor reference imagery choice or low waypoint count. But, KAVC_01_fog_S and 
KAVC_01_fog_SE seem to disprove this. 

KAVC_01_fog_SE -- fewer waypoints and reference images but its location correct for 
over 50% of the approach (albeit with less than 90% confidence for much of that time). 

We did not use transmissometers to quantify visibility, and cannot identify a root cause.
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Approach Video Way

points

Refs/

waypoint

Epochs Refs defining

epoch

KAVC_01_fog_S 3 2,2,2 3 1,1,2

KAVC_01_fog_SE 2 1,1 2 1,1

../../__runway paper/batch/ret_off/postProb/KAVC_01_sensor_VIS_time_day_season_SUMMER_weather_fog_approach_S_origin_vega_flight1_secondapproachkavc01MTS_result.avi
../../__runway paper/batch/ret_off/postProb/KAVC_01_sensor_VIS_time_day_season_SUMMER_weather_fog_approach_SE_origin_vega_flight1_firstapproachkavc01MTS_result.avi


Conclusions Illumination change

The “modest illumination change” constraint was maintained strictly 
throughout the study. Only mid-day and nighttime approach video was 
available. 

Shadows: A change in shadows early or late in the day is an example of 
illumination change that violates the fixed scene assumption; more data is 
required to assess the fragility of machine vision due to shadows. 

Diffuse vs. direct sunlight: What about, say, direct vs. diffuse sunlight on a 
foggy day? 
We tested overcast conditions only. We assume that air turbidity is a 
stronger effect but cannot prove it with this data. 
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Conclusions Modest viewpoint change
The waypoint methodology ensures viewpoint constancy. 

Simple conclusion: machine vision fails as expected when the viewpoint is changed greatly. For example, 
epoch locations from early in an approach have zero reported probability late in an approach. 

Stronger conclusion: runway recognition with machine vision is effective with modest viewpoint changes. 
Example - KMEM_09_IR_night. What is remarkable is the time span of the
positive result: reference images from a single 33 millisecond time sample 
(a single frame) produce a correct result
for 15-30 seconds.

Important exception:

a) the continuity of reported location is less variable 
for a large aircraft (Boeing 747, at top)
than a small aircraft (Cessna, at bottom)

b) the camera viewpoint in recordings from a small airplane 
is prone to sudden changes in pitch, yaw or roll –
presumably due to wind shifts during the flight.  

Since everything is recomputed for each frame, this does not arise from compute latency. Looking at the 
original video for KPHF_25 and other Cessna recordings, we observed that the image sensor does not 
respond instantly to a sudden viewpoint change. Streaking, smearing and other frame readout artifacts 
are evident with each jerk.  We conclude that a sensor with a higher frame rate, a faster pixel readout 
response, or frame-shielded design is needed to eliminate this effect. This sensor constraint should be 
observed in General Aviation and in small UAV applications.
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../../__runway paper/batch/ret_off/postProb/KPHF_25_sensor_VIS_time_DAY_season_SUMMER_weather_CLEAR_approach_NE_origin_00003_PHF_low_approach_from_center_result.avi


Conclusions Repeatability 

Clear daylight conditions: Machine vision can repeatedly locate a runway. 

Clear night conditions: We expect that repeatability is possible but can’t prove it. 

Fog or rain: Violate the fixed scene constraint and wipe out repeatability, even 
between two foggy approaches. 

Across sensors and across time of day: Need more data to answer this.

Only simulator data was available to test across sensors (visible/SWIR) and across 
time of day

Because of these shortcomings, we cannot say that repeatability is beyond the 
capabilities of machine vision as the sensor or time of day is changed. 

Optical Pattern Recognition XXVI 279477-14 Machine Vision for Runway ID

Simulator Pluses: 

• Fidelity is sufficient to produce high specificity 
even with 640x480 resolution. 

• Free from the sudden viewpoint changes as 
observed in the Cessna flights. 

• Geodetics are superb – landscape features are 
identical across sensor types and times of day.

Simulator Minus: 

Landscape features are not photorealistic. 

• Nighttime light placement seems arbitrary as 
perspective increases toward the vanishing point.

• Ground features such as buildings are generally 
“flattened and painted” onto the ground. 



Conclusions Applications

Geolocation validation and verification is already possible:

GPS – most of the approach
Inertial Guidance – all of the approach

Machine vision may 

supplement these, or 

provide the same capability (for some flight conditions) 
at lower cost, 

though the effort to certify machine vision to the level of inertial 
technology is a significant barrier to adoption.  

With visible and SWIR sensor inputs, the limitations of machine vision 
geolocation in poor weather ensure that it cannot be the sole backup
navigational technology. 

Tests of its effectiveness with weather-penetrating sensor inputs are 
required to overcome this limitation. Anticipated over 15 years ago.
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Conclusions Operational feasibility

An aircraft with 

• an onboard image sensor, 

• modest computing power, and 

• a database of reference images and probabilities 

can geolocate as long as visibility is clear and the database

• includes imagery from various of times of day,

• covers the geographical areas likely to be encountered, and

• contains imagery of the same sensor type as the onboard sensor.

We expect that the imagery database must also: 

1. include seasonal variations such as snow cover, wet vs. dry pavement, 
and full vs. sparse foliage, and

2. be reasonably current. Minor scene changes did not degrade results, 
and we expect that similarly minor changes (traffic cones, commercial 
signage, and cell towers) will not do so either. Major changes, such as 
new roadways and buildings will violate the fixed scene assumption.   
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computation 
time will increase 
linearly with 
database size


