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Motivation

• With projected increases in national air traffic, advanced tools will be needed to 
maintain the current level of NAS safety, and aid in decision-making at all levels
– Optimal decisions require knowledge of the current state of the NAS, and its 

future state
• Pilots, flight controllers, and other NAS operators need situational awareness to 

make informed decisions to avoid unsafe events
• Currently, NAS operators must 

– Consolidate operations-related information from disparate sources
– Apply domain knowledge to interpret the current NAS state and forecast future 

NAS state
• Challenges include

– Time- and workload-intensive
– Information may be imprecise, inaccurate, incomplete, and inconsistent
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Research Goals
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Approach

• Safety Analysis & Modeling
– What are the hazards to safe flight?
– What unsafe events can occur?
– Which hazards/events occur most frequently?

• Real-Time Safety Monitoring
– How do we define “safety” and “risk” in the NAS?
– How do we measure/quantify it?
– How do we estimate the current state?

• Safety/Risk Prediction
– Which unsafe events are likely to occur in the future, if no corrective action is taken?
– What does the pilot need to be aware of?
– What does a controller need to be aware of?
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Definitions
• Unsafe event

– An event/situation that compromises NAS safety or established safety standards
– Examples: loss of separation, loss of control, controlled flight into terrain, runway incursion, 

hard landing, tail strike, collision, etc.
• Hazard

– A condition that contributes to unsafe events
– Examples: convective weather, poor visibility, difficult terrain, etc.

• Safety metric
– A quantitative measure of some aspect of safety of the NAS
– Examples: distance between two aircraft, distance between aircraft and convective 

weather region
• Safety threshold

– Some limit on a safety metric or set of safety metrics
– Example: En-route separation of 5 nautical miles

• Safety margin
– “Distance” between current safety metric(s) and safety threshold(s)
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Concepts: 1-D Example

Safety	  Threshold

Safety	  
Metric

Current	  
Time

Predicted	  
Unsafe	  Event

Predicted	  
Uncertainty
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Concepts: Using Predictive Information 

Unsafe	  region	  of	  airspace	  for	  A2:
-‐ Probability	   of	  loss	   of	  separation	  
within	   next	  20	  minutes	  =	  80%

-‐ Probability	   of	  hitting	  convective	  
weather	  within	  next	  20	  minutes	  =	  60%

A1

A2
Region	  of	  
Convective	  
Weather
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Concepts: Safety “Heat Map”

Now 5	  minutes

10	  minutes 20	  minutes
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Safety Analysis: Hazards

• Identify hazards that compromise safety analyzing reports from several national incident and 
accident databases
– Down-select hazards based on potential to model, monitor, and predict

Unsafe	  Events

Hazards
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/blind	  spots

Inoperative	  
Navaid

Low	  
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Areas

Procedure	  
Complexity

AccidentsIncidentsLoss	  of	  
Separation

Tailwind	  
Landings

Unstable	  
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Go-‐around/	  
Rejected	  Takeoff

Evasive	  
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…

…

Airspace-‐related Human-‐performance Environmental

NTSB ASRS FAA ……
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Safety Analysis
• ASRS Reports

– Topics 
• Altitude deviation
• Bird or animal strike
• Controlled Flight into Terrain
• Communication 
• Fuel Management
• Near Miss
• Runway Incursion
• Wake Turbulence 
• Weather

– Wake turbulence, weather, and congestion are 
some common causes of unsafe events

• NTSB Accident and Incident Reports (2010 – 2015)
– Turbulence, congestion, loss of situational 

awareness are some common causes of unsafe 
events

• ASRS 1201963: Unusually heavy CRJ-200 encounters 
wake turbulence shortly after takeoff at ATL. “The new 
separation minimums between takeoffs in Atlanta needs 
to be altered. The company needs to present these 
issues to local ATC to prevent a major accident in the 
future.” 

• ASRS 1195051: Deviating for weather puts flight in 
conflict with SUA

• NTSB 4/27/12 incident: Loss of Separation due to 
simultaneous independent runway operations on 
runways that do not physically intersect but whose flight 
paths intersect (LAS, go-around on 25L, departure on 
19L; two controllers) 

• NTSB 12/1/11 incident: Runway incursion caused by 
Tower Local Control clearing aircraft to cross runway 
immediately after clearing another aircraft to depart
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Safety Analysis: Hazards 
Table 4.1: Airspace-related Hazards

Hazard Collision Loss of
control

CFIT Injury
Accident
or Incident

Property
Damage

Glideslope aids (e.g., VASI, PAPI, ILS glideslope) - inop x
Radar coverage - OTS or blind spots x x
Communication - facility OTS or blind spots x x
Communication - handoff automation OTS x x
Lights - inop x x
Lights - misleading, nearby airport x
Lights - bright LED, runway or approach x
Alternatives - few available (e.g., nearby emergency
landing sites)

x x

Weather is one of the major hazards to flight operations and has among the biggest dynamic
effects on airspace safety. Weather, of course, is always present, but some weather conditions are
more benign and conducive to safe flight. The actual effects of particular weather on a particular
flight’s safety depends on a number of factors, among them the capability of the aircraft, the capa-
bility of the pilot, the location and extent of the weather, the interaction between the weather and
the airspace (e.g., strong winds aligned with the runway are less hazardous than strong crosswinds),
and contributions of other concurrent hazards (e.g., few alternate landing sites available). Although
weather predictions have improved significantly recently, additional precision is still required to
maintain the required NAS efficiency in busy airspace.

Table 4.2: Environmental Hazards

Hazard Collision Loss of
control

CFIT Injury
Accident
or Incident

Property
Damage

Weather - significantly worse than forecast x x x x x
Convective weather x x x
Hail x
Rain - moderate x x
Icing x
Turbulence - moderate to severe x x x
Wind - strong x x x
Visibility x x x
Temperature x x
Volcanic ash x x x
Night x x x x x
Low sun angle x x x x x
Animal activity - birds x x
Animal activity - other x x
FOD x x

Finally, we enumerate some human-workload-related hazards that affect airspace safety. Some
of these hazards affect the flight path and can lead to fuel exhaustion. Other hazards can lead
to increased pilot or air traffic controller workload and contribute to errors that combine with
other hazards to cause accidents or incidents. An example of this type of hazard is emergency
or non-nominal operations that can cause excessive workload for a controller, diversions due to
inaccessible airspace for the non-emergency flights (potentially leading to fuel exhaustion), or
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increased potential for collisions due to the unexpected behavior of an emergency flight. The
predictability of these emergency or off-nominal operations can vary significantly. For instance,
a closed runway could be the result of a known hydraulic leak that alerts operators of a potential
for a gear-up landing minutes to hours in advance. Alternatively, a closed runway could be the
result of a badly flown approach that results in a runway excursion and can only be predicted as the
approach is observed. Although the hazard to following flights in each case is the closed runway,
the initiating hazard is either an aircraft mechanical issue with a long prediction window or an
incorrect procedures with a prediction window of only a few minutes at best.

Perhaps a hazard that needs additional explanation is lack of attention on the part of either
a pilot or a controller, and specifically why it is in the list of hazards we can predict. Lack of
attention due to complacency or multi-tasking is difficult to predict when looking from the outside.
If one were sitting next to a controller and could see that he is chatting with a colleague, one could
surmise the airspace under his control is perhaps less safe. Even more obvious is if the controller is
sleeping or a pilot is working on an involved spreadsheet. But we do not have access to any of that.
This item is in the predictable list partly because we can suppose certain actions over-tax human
capacity - such as programming a flight computer for an approach or working multiple positions
as a tower controller, and partly because of human nature - such as pilots or controllers becoming
complacent.

Table 4.3: Human-Workload-Related Hazards

Hazard Collision Loss of
control

CFIT Injury
Accident
or Incident

Property
Damage

Elongated flight path – due to re-route x x
Elongated flight path - due to excessive vectoring or ma-
neuvering (e.g., for weather)

x x x

Takeoff - significantly delayed x x
Multiple speed changes on approach x x x
Required tasks (procedures) - number and complexity x x
Incorrect operations/procedures x x x x x
Emergency / non-nominal situations x x x
Aborted / botched approach x x x x x
Communication issues (e.g., difficult accents, inexperi-
enced pilots, multiple frequencies for one controller, etc.)

x x x

Flow control restrictions - active (e.g., MIT) x
Lack of attention - complacency, multi-tasking x x x x x

As mentioned earlier, the above list of hazards is not exhaustive, and only a sampling of hazards
that can be assessed and predicted based on available or expected data sources. Hazards that cannot
be predicted are outside the scope of this work. A few of such hazards are listed below:

• Mechanical hazards, e.g., unnoticed mechanical issues, incorrect autopilot setting, extent of
aircraft damage, extent of damage to aircraft systems from rodents or similar animals as well
as bird strikes etc.

• Operational hazards, e.g., Pilots not being happy with company policies (involving schedul-
ing rest times, operating flights, staffing, etc.); certain company policies not giving safety

40

Example hazards, 
based on 
category

Environmental	  Hazards Human-‐performance	  Hazards

Airspace-‐related	  Hazards
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Safety Modeling: Safety Metrics and Thresholds

• Develop set of safety metrics to assess these hazards quantitatively
• Determine thresholds to define regions of reduced safety

– Thresholds determined through analysis and consultation with subject matter experts
– Data mining of archived operations data can also be utilized

Some	  Example	  Safety	  Metrics	  and	  Thresholds

III. Safety Analysis and Modeling

The first step in applying our framework to the aviation safety domain requires determining the quantities
of interest for monitoring and prediction. To this end, we researched National Transportation Safety Board
(NTSB) and FAA aviation accident and incident reports.3 Not every unsafe situation leads to an accident
or incident, however, so we greatly expanded the list of potential hazards to airspace safety by also studying
Aviation Safety Reporting System (ASRS) reports.4 For our work, we focused on a subset of hazards within
three main categories: (i) airspace-related hazards, e.g., inoperative navigation aids or high congestion; (ii)
environmental hazards, e.g., convective weather or animal activity; and (iii) human-performance hazards,
e.g., pilot fatigue or pilot distraction. The list of hazards is too voluminous to include in this paper, and
is documented in a separate report.5 Much prior research6,7, 8, 9, 10,11,12 has focused on aircraft malfunction
hazards, e.g., engine failure, structural issues, sensor malfunctions, and hence will not be covered in this
paper, although our approach can include these hazards if desired.

After identifying potential hazards, the next step is to design a set of safety metrics, �, as an algebraic
function F of the states, x, that quantify these hazards. These safety metrics are quantities of interest that
should be monitored and predicted in order to predict unsafe events. Recall from Section II that an unsafe
event is a transition event from an acceptable to unacceptable space of �, and these boundaries between the
acceptable and unacceptable spaces are defined through threshold functions, TE(�(k)). Threshold functions
can take any general form. Selecting an appropriate threshold can be challenging. For some safety metrics,
rules and regulations dictate a threshold (however, each operator can select a more conservative threshold if
desired). For example, FAA regulations require that certain categories of flights remain clear of particular
special use airpaces (SUA). For this case, the threshold for the safety metric distance from SUA could
be set to 0. For other safety metrics, analysis, data mining, or consultation with subject matter experts
or the operators may be necessary. For example, the threshold for a congested airspace safety metric is
a↵ected by composition of tra�c (e.g., all heavy jets vs gliders, helicopters, small general aviation aircraft,
and large and heavy jets), flight paths (single stream vs multi-stream merging), and even the controller on
console (some controllers move tra�c more e�ciently than others). In these cases, we can use a hybrid
method to determine appropriate thresholds, combining information from multiple sources. We can also
leverage individual information, such as personal minimums, level of certification, years of experience, etc.,
to determine such thresholds.

To illustrate the process using an example, aircraft separation is a safety metric that constantly needs
to be monitored and predicted in order to predict a loss of separation unsafe event. The safety metric
function takes as inputs the positions of two aircraft, and outputs the horizontal distance between them,
their heading with respect to each other, and the altitude di↵erence. For the threshold on this safety metric,
general separation standards for en-route flight provide the value of 5 nautical miles for lateral separation
and 1000 feet for vertical separation (per FAA Order JO 7110.65).

Table 1 lists some example safety metrics, the arguments their corresponding safety metric functions
can take, the outputs of these safety metric functions, and example threshold functions. Note that this list
is provided for illustrative purposes and is by no means exhaustive. A NAS participant, such as a control
center or an airline, would generate their own safety metrics, safety metric functions, and threshold equations
based on their requirements. A more comprehensive list of safety metrics, along with a discussion on how
to determine thresholds, is available in.5

Table 1: Some Example Safety Metrics

Safety metrics Safety Metrics Function Arguments Safety Metrics Function Out-
puts

Example of Threshold Func-
tions

distance and heading
to weather event

point of interest, weather severity,
weather type, time

distance and heading distance.thunderstorm > 20 mi
and thunderstorm.intensity <
MEDIUM

weather at coordi-
nate

point of interest, time matrix of all weather categories
(e.g., hail, rain, snow, mist,
mixed, turbulence, thunder-
storm, wind, microburst, wind-
shear, etc.) and their rele-
vant properties (e.g., severity,
phase, type, persistence, direc-
tion of movement, etc., temper-
ature, humidity)

A threshold is needed for each
element of the matrix. Some
examples: turbulence.intensity
< MODERATE, thunder-
storm.intensity  MOD-
ERATE, rain.intensity <
SEVERE
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Table 1: Some Example Safety Metrics

Safety metrics Safety Metrics Function Arguments Safety Metrics Function Out-
puts

Example of Threshold Func-
tions

risk of wake turbu-
lence

point of interest, time, {weather at coor-
dinate}, type of preceding aircraft

risk category, e.g., low,
medium, high

wake turbulence risk 
MEDIUM

avoidance areas at
coordinate

point of interest, time matrix of avoidance area cate-
gories (e.g., SUAs such as re-
stricted, warning, alert, TFR,
practice areas, controller train-
ing areas, special event areas,
etc., obstacles, noise sensitive
areas, airport hotspots) and
status (e.g., active/inactive, re-
striction type, allowed noise
level, etc.)

avoidance area.tfr.active =
FALSE

degree of operational
normalcy

volume of interest, time, number of re-
strictions (like miles in trail (MIT) to
an adjoining center), cumulative sched-
uled delay, flow control programs in e↵ect,
emergency/non-emergency situations

Normalcy score, e.g., low,
medium, high

ops normalcy > LOW

IV. Real-Time Monitoring and Prediction

Once potential hazards are selected and safety metrics defined, the goal is to, in real-time, monitor the
safety metrics, �(k), and predict the occurrence of unsafe events, E. In order to estimate the current value
of �(k), we must first estimate the state of the NAS, x. Then, given the state estimate and probability dis-
tributions (in terms of probability density functions) of future inputs to the NAS (e.g., winds aloft forecasts,
planned aircraft routes, etc., for some future duration of interest), we can predict the future values of x and
� and the occurrence of events E. Following a model-based approach, both these tasks require dynamic
models of the NAS.

First, Section IV-A describes a generic architecture that enables real-time monitoring and prediction.
Then, Section IV-B describes modeling approaches for the NAS. Section IV-IV-C covers uncertainty quan-
tification and management. Section IV-D discusses solutions to the monitoring problem, and Section IV-E
discusses solutions to the prediction problem, using these models. Section IV-F discusses how likelihoods of
unsafe events are combined.

A. Architecture

Monitoring and prediction must be performed in an integrated manner in order to continuously assess the
safety of the overall NAS; the outputs of the monitoring step are inputs to the prediction step. Our approach
to such an architecture is model-based, that is, we develop models of the various components of NAS and
how such components interact, in order to predict its behavior over time. In order to predict the value of
�(k) in the future, and to predict when undesirable events will occur, we require a model describing how
the state x evolves in time:

x(k + 1) = f(k,x(k),u(k),v(k)), (8)

where f is the state function, u is the input vector (exogenous inputs to the system, such as the aircraft’s
intended flight routes and wind velocity at various altitudes), and v is the process noise vector. The state
equation allows us to compute future values of the state given the inputs, and to compute future values of
� and evaluate the threshold function, TE .

In order to make a prediction at time k using f , we require x(k), which, in general, is not known. Instead,
we have available an output vector y, defined through an output equation:

y(k) = h(x(k),u(k),n(k)), (9)

where h is the output function, and n is the sensor noise vector. We need to infer x(k) from y(k) using
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Systems Modeling

• Models of NAS, e.g., aircraft, pilots, controllers, 
weather phenomenon, restricted airspace, etc.
– Input to the framework (plug-and-play)
– Model fidelity determined by application

• Uncertainty is inherent to the system
– State of system, future inputs to the system, 

system dynamics (process noise), measurement 
error (sensor noise)

• Define functions that compute safety metrics from 
NAS state

• Determine thresholds that define the boundaries 
between safe from unsafe regions of the state space

Safe Unsafe

Current	  
State	  at	  tP

Future	  
State	  at	  t’

Future	  State	  
at	  t’’

Future	  
State	  at	  t’’’

State	  Space
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Computational Architecture

NAS Monitoring Prediction
Inputs

Measured	  
State

Hidden	  
State	  

Estimate

Safety	  
Metric	  
Values

Predicted	  State

Predicted	  Safety/Risk	  
(as	  measured	   by	  

metrics)

Predicted	  Times	  of	  
Occurrence	  of	  
Unsafe	   Events

Probability	  of	  Future	  
Occurrence	  of	  
Unsafe	   Events	  

(in	  next	  x minutes)Computation	  can	  be	  distributed	  to	  
different	  regions	  of	  the	  NAS	  and	  

consolidated	  for	  system-‐level	  safety	  
assessment
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Real-Time Monitoring

• What is the current system state and its associated uncertainty?
– Input: known system inputs and measured state
– Output: state estimate (probability distribution)

• Estimation algorithms typically have two steps
– Prediction step: Using system models, compute the probability distribution for the 

state one step ahead, starting from state estimate from previous step
– Correction step: Use Bayes theorem to update prediction based on observations of 

the system state
• Given an estimate of the system state, an estimate of the safety, in the form of safety 

metrics, can be computed, along with safety margin and risk assessment
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Prediction

• Requires dynamic models of the system
• Algorithms use models to simulate the system ahead

– Require some knowledge of future system inputs
• Examples: flight plans, weather forecasts
• This is highly uncertain; and this uncertainty must be included

– Simulate forward in time to some specified prediction horizon (for example, 20 
minutes)
• Determine if and when predicted state violates safety thresholds

• Algorithms must handle uncertainty
– Uncertainty is present in the current state estimate, in the future system inputs, in the 

system models, etc.
– Example: Monte Carlo sampling – simulate forward many realizations (samples), 

sampling from all uncertain variables
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Uncertainty Management

Uncertainty Characterization

• Challenges:
• Existing work is mostly based 

on assuming Gaussian 
distributions

• Accurately estimate probability 
distributions

• Ongoing work:
• Systematically account for 

uncertainty

Inputs
(e.g., weather, 

Departure push-back, 
Airspace 

demand/capacity)

Estimate 
uncertainty 

Outputs
(e.g., delay 

propagation, conflict 
prediction, safety/risk 

analysis)

Propagate all uncertainty 
through model

Model

Modeling 
uncertainty

Uncertainty Propagation

• Challenges:
• Existing uncertainty 

propagation methods are very 
simplistic with assumptions à
not rigorous

• Ongoing work:
• Rigorous methods à

sampling, analytical
• Advanced Monte Carlo-based
• Analytical optimization-based 

Uncertainty Management

• Address variety of issues:
• Identify what input factors 

have significant impact on 
outputs

• Correct/mitigate/control 
inputs to meet acceptable 
output margins

• Challenges:
• Little to no existing work to 

manage existing uncertainty
• Ongoing work:

• Global-Local sensitivity 
analysis

• Optimization-based 
procedures 
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Consolidating Safety Metrics

Overall Likelihood of Being Unsafe 

Likelihood of  
Being Unsafe 
E1: Aircraft 

Separation Violation  

Likelihood of  
Being Unsafe 
E2: Aircraft-Weather 

Violation  

Likelihood of  
Being Unsafe  
E3: Congestion in 
region of interest 

Aij 
Aircraft “i” versus 
Aircraft “j” unsafe 

(all i, j) 

Wij 
Aircraft “i” versus 
Weather “j” unsafe 

(all i, j) 

Ci 
Congestion in Region 

“i” (for all i) 

P(Aij ) P(Wij ) P(Ci )

P(E1) = P( ∀i, j
i≠ j

∪ Aij )

P(∪i Ei )

P(E2 ) = P( ∀i, j∪ Wij ) P(E3) = P( ∀i∪ Ci )

Likelihood that aircraft “i” and aircraft 
“j” violate minimum separation 

Likelihood that aircraft “i” and weather 
“j” violate minimum separation 

Likelihood that region “i” is 
congested 

Figure 5.4: Probability Tree: Unsafe Indicators

Hence, using the real-time monitoring and prediction framework, all possible Aij’s are con-
sidered, their probabilities are evaluated, then Eq. 5.4 is used to compute P (E1). Typically, the
computation of probability of union of events is referred to as system-level reliability analysis [79];
since we use a Monte Carlo algorithm to compute probabilities in this report, union-probabilities
can also be computed within the scope of the proposed computational framework.

5.4.2 Aircraft-Weather Separation
Similarly, the separation between any aircraft and a region of adverse weather can be quantified as
an output quantity. Using a minimum-separation-distance criterion, we can define an event Wij;
this event is said occur when the ith aircraft and the jth adverse-weather-region are too close to each
other. Hence, the event E2 is said to occur when any of the events Wij (i, j are indices referring the
numbering of aircrafts and adverse-weather regions respectively, in the airspace) occurs. In other
words:

P (E2) = P ([8i,jWij) (5.5)

Similar to the aircraft separation safety-scenario, using the real-time prediction framework, all
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• It is important to account for 
probability-based information 
from multiple safety-related 
incidents

• Use principles of conditional 
probability and total probability 
to compute an integrated 
probability metric
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Example: Wake Turbulence in Terminal Airspace

• Wake turbulence caused by wake vortex produced by aircraft 
generating lift at wing tips due to pressure differences
– Weight, wingspan, speed of generating aircraft 

determine 
the initial strength and motion of the vortices

– Ambient atmosphere (wind, stability, turbulence) 
determine the eventual motion and decay rate

• Induced rolling moment on an aircraft entering wake 
turbulence can cause it to lose control by exceeding roll 
control

• Pilots are responsible for maintaining adequate horizontal and 
vertical separation for wake turbulence avoidance during 
flight

• Controllers follow separation standards for arriving and 
departing flights in controlled airports

 SFO

28L

10R

28R

10L

01L

19R

01R

19L

1

2

(a) t = 100 s.

 SFO

28L

10R

28R

10L

01L

19R

01R

19L

1

(b) t = 220 s.

Figure 3. Wake turbulence scenario. Aircraft not drawn to scale.

them in the direction of the wind at tprev. The wake turbulence region is then defined by these points; this
procedure is summarized in Fig. 4, where the wake region at time t is computed based on the aircraft position
at times t, t�1, and t�2 (pt, pt�1, and pt�2, respectively). At pt, the width is equal to the distance between
the wingtips and the wake region points are placed there. At pt�1, the width of the region has become larger
than the original wingtip distance and shifted in the direction of the wind. At pt�2, the turbulence has
spread still wider and shifted further by the wind from its original location, and this continues for each past
time step (the finer the sampling time, the finer the resolution of the region). This region extends below
for 1000 feet. This approximation of the wake region is meant to be more realistic than a simple region
computed based on separation standards, but simple enough for demonstration purposes. More advanced
models, such as those in21,22,23 can be used in future work.

t

t-1

t-2

Wind

Figure 4. Computed wake turbulence region at time t.

Connecting the description of this scenario to our framework, the event e we are concerned with is whether
an aircraft enters a region of wake turbulence created by another aircraft. Given two aircraft, Te is defined
to be true when the position of the first aircraft is within the wake turbulence region of the second aircraft.
Since we have two aircraft, there are 2 di↵erent wake turbulence events we want to predict (A1 in wake of
A2, A2 in wake of A1). The safety metric in this case is computed as the distance between an aircraft and
the wake region of another aircraft.

Initially, A1 is on the runway. The time of takeo↵ clearance is unknown, and will be given once the
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Example: Wake Turbulence in Terminal Airspace

• Terminal airspace of San Francisco Airport 
(SFO)

• A1: Light Aircraft (e.g., Piper Aztec) waiting 
on runway 01L for takeoff clearance

• A2: Large Aircraft (e.g., Boeing 777) coming 
in for landing on crossing runway 28L
– Lined up at 150 knots

• Safety metric: A1 will be in the wake of A2
• Strong crosswind (19 knots) coming from the 

north
– A2 does a go-around as it is difficult to 

maintain directional control because of 
crosswind

– Crosswind pushes wake turbulence of 
A2 down south toward A1
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than the original wingtip distance and shifted in the direction of the wind. At pt�2, the turbulence has
spread still wider and shifted further by the wind from its original location, and this continues for each past
time step (the finer the sampling time, the finer the resolution of the region). This region extends below
for 1000 feet. This approximation of the wake region is meant to be more realistic than a simple region
computed based on separation standards, but simple enough for demonstration purposes. More advanced
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Since we have two aircraft, there are 2 di↵erent wake turbulence events we want to predict (A1 in wake of
A2, A2 in wake of A1). The safety metric in this case is computed as the distance between an aircraft and
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Example: Wake Turbulence in Terminal Airspace

• From controller’s perspective, probability of 
a wake turbulence event happening in the 
next 5 minutes can be computed

• This information can be used to show 
trouble spots on the controller’s display
– This could result in controller not giving 

takeoff clearance to A1 till the wake 
turbulence of A2 dissipates
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procedure is summarized in Fig. 4, where the wake region at time t is computed based on the aircraft position
at times t, t�1, and t�2 (pt, pt�1, and pt�2, respectively). At pt, the width is equal to the distance between
the wingtips and the wake region points are placed there. At pt�1, the width of the region has become larger
than the original wingtip distance and shifted in the direction of the wind. At pt�2, the turbulence has
spread still wider and shifted further by the wind from its original location, and this continues for each past
time step (the finer the sampling time, the finer the resolution of the region). This region extends below
for 1000 feet. This approximation of the wake region is meant to be more realistic than a simple region
computed based on separation standards, but simple enough for demonstration purposes. More advanced
models, such as those in21,22,23 can be used in future work.
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Connecting the description of this scenario to our framework, the event e we are concerned with is whether
an aircraft enters a region of wake turbulence created by another aircraft. Given two aircraft, Te is defined
to be true when the position of the first aircraft is within the wake turbulence region of the second aircraft.
Since we have two aircraft, there are 2 di↵erent wake turbulence events we want to predict (A1 in wake of
A2, A2 in wake of A1). The safety metric in this case is computed as the distance between an aircraft and
the wake region of another aircraft.

Initially, A1 is on the runway. The time of takeo↵ clearance is unknown, and will be given once the
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Figure 5. Probability of A1 being in the wake of A2 within the next 5 minutes as a function of time.

approaching aircraft on the intersecting runways is clear. A2 is lined up for approach at about 150 knots.
As mentioned earlier, there is a wind coming from the north of 19 knots, that will be pushing the wake
turbulence region south toward A1.

The safety metric is constantly monitored, and predictions are made up through 5 minutes into the
future at a discrete time step of 10 s. From the pilot’s perspective, we compute the probability that a wake
turbulence event will happen in the next 5 minutes. Fig. 5 shows the computed probability of A1 being in
the wake region of A2 within the next 5 minutes, computed at each time. Initially, since the takeo↵ time
is unknown, the probability is zero. At 195 s, takeo↵ clearance is known and immediately the prediction
algorithm computes a high probability of encountering wake turbulence, since we know that A2 is not landing.
The probability remains high until the aircraft is expected to have moved past the region of turbulence.b

From the controller’s perspective, we can compute the probability of a wake turbulence event happening
in the next 5 minutes at every spatial position. Aggregating all that information, we can overlap trouble
spots on the controller’s view of the map. This is shown in Fig. 3 at t = 220 s. The yellow region is the
region of wake turbulence created by A2 after its missed approach, and the marked red region indicates
future locations of a wake turbulence event within the next 5 minutes.

VI. Summary and Future Work

In this paper, we presented a methodology and framework for computing safety metrics, and predicting
the occurence and timing of unsafe events in the NAS. Our approach utilizes a model-based prediction
framework that first requires o✏ine analysis and modeling of hazards, safety metrics, and thresholds. The
models are then utilized for (online) real-time monitoring and prediction. For robustness to actual operations,
which are highly stochastic, the monitoring and prediction algorithms treat uncertainty with mathematical
rigor. We demonstrated the full framework through a case study that computes the e↵ects of wake turbulence
on airspace safety.

We believe that our real-time monitoring and prediction framework will benefit many of the diverse NAS
operators. In future work, this framework can be used for several applications, such as improving shared
situational awareness through automated assessment of multiple factors for potential flight routes, minimizing
the necessity of in-flight route modification through more informed route selection, and supporting strategic
planning between users and the ATC system. Through predictive safety computation that includes rigorous
handling of uncertainty, pilots and ATC controllers can receive advance warning of precursors to unsafe
events. This enables preemptive actions that aim to avoid unsafe events altogether, rather than having
to mitigate them. In addition to the traditional NAS participants, predicted safety metrics could also be
incorporated into Unmanned Aerial System (UAS) autonomy and decision-making software, perhaps enabling
unmanned aircraft to automatically avoid unsafe NAS regions. In addition, sensitivity analysis techniques
can be used to determine the most significant contributors of uncertainty to unsafe events and thus aid in
decision-making. Finally, risk analysis methods can be used to incorporate the criticality of di↵erent hazards
(rather than treating all hazards as being equally critical to safety) and so the overall risk associated with
unsafe events can be computed. Although we present the approach here in a centralized manner, it can also
be distributed, which will allow the approach to scale easily.24 For example, each aircraft can produce a

bHere, we used N = 100 samples. With more samples, the probability curve in Fig. 5 would be smoother, and the decrease
around t = 200 s would disappear.
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Summary and Future Work

• Developing a methodology and framework for computing safety of the NAS in real-time
– Define hazards, unsafe events, safety thresholds
– Monitor and predict safety in real-time
– Outputs can be used for improved situational awareness, decision support tools, 

improved decision-making
• Current work

– Developing approach on SMART NAS Testbed
– Our tool, currently in development, subscribes to airspace data, computes safety 

metrics, and makes predictions w/r/t airspace safety
• Future Work

– Refine safety metrics, determine additional metrics
– Refine algorithms through real data
– More advanced monitoring and prediction algorithms
– More advanced uncertainty quantification and propagation techniques
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