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Motivation (Fan Noise Reduction) 

•  Liner  impedance is a critical input parameter  
•  For at least two decades the NASA Langley Research Center 

has been developing tools for impedance eduction  
–  Account for uniform or sheared flow profiles in the duct  
–  Successfully applied to liner samples in the GFIT and CDTR 

•  Limitations: 
–  Applicable only to 2D or quasi-3D sound fields 
–  Not applicable to ducts with peripherally varying impedance 
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Liner Impedance  



Research Objectives 

•  To develop an impedance eduction code that 
–  Accounts for 3D sound fields 
–  Accounts for peripherally varying wall impedance 

 
•  To validate the 3D code using measured  GFIT data by 

–  Comparing 3D results to that educed from the 2D code 
–  Comparing results of a peripherally varying three-

segmented liner to that of a known impedance spectra  
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Measurement Apparatus 

GFIT and 
Instrumentation 
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Boundary Value Problem 

  
•  Solve the convected Helmholtz’s Equation 

 
 

•  Use the source/exit plane  pressures as inflow/outflow BC’s 
 

•  The Myers wall impedance boundary condition along the liner  
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Impedance Eduction 

  
•  Solve the 3D boundary value problem using the finite element 

method (FEM) and obtain the acoustic pressure field, p 
•  Construct the quadratic objective function, F(θ,χ)  

 
 
 

•  Find the Minimum of this objective function using a local 
gradient-based optimizer to obtain the unknown impedance 
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Uniform Test Liners 

  
 
  

 
 

7 

Wire-Mesh Liner (linear liner) 

Conventional Liner (nonlinear liner) 



Peripherally Varying Liner 

•  Scatters energy into spanwise duct modes (3D effect) 
•  Impedance of aluminum tape is set to that of a rigid wall 
•  The impedance of the soft segment is identical to that 

 of the conventional liner 
•  Same liner is being tested by the French aerospace 

company (ONERA) using Laser Doppler Anemometry 
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Test Conditions 

•  Data acquired in the GFIT (2 inch x 2.5 inch cross-section) 
•  Each liner (wire-mesh and conventional) is 24 inches long 
•  Three uniform flow Mach numbers   

–  Wire mesh liner (Mach 0.0, Mach 0.3, Mach 0.5) 
–  Conventional liner (Mach 0.0, Mach 0.2, Mach 0.3) 

•  Frequency range of interest, f=0.4 to 3.0 kHz 
•  Data acquired at 87 microphones around duct perimeter 
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Comparison of 2D and 3D Codes (Mach 0.5) 

 
Microphone data acquired from exact mode solution 

ü  2D and 3D codes are in excellent agreement 
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Comparison of 2D and 3D Codes (Mach 0.5)  
 

 Microphone data measured in the GFIT 

ü  2D and 3D codes are in excellent agreement except at 
frequencies of low attenuation 
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Comparison of 2D and 3D Codes 

 
 Microphone data measured in the GFIT 

ü  2D and 3D Codes are in excellent agreement except at 
resonance and  frequencies above cuton of higher order modes 



13 

Comparison of Uniform and Segmented liner  

ü  Impedance of uniform and soft segment of three-segmented 
liner are in good agreement  

 
 Microphone data measured in the GFIT 



Conclusions  
•  The current 3D method educes the impedance spectra to  

design order with exact input data 
•  When GFIT data is used with the uniform-structure test 

samples, the 3D theory reproduces the same impedance 
spectra as the 2D  theory except for frequencies 
corresponding to very low or very high liner attenuation 

•  When the educed impedance of the uniform-structure liner 
is compared to that of the soft portion of the three-
segmented liner, good agreement is generally obtained 
except for those frequencies corresponding to extremely 
large attenuation 
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Axial coordinate z, meters
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