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Motivation (Fan Noise Reduction)

Liner Impedance

Liner impedance is a critical input parameter

For at least two decades the NASA Langley Research Center
has been developing tools for impedance eduction

— Account for uniform or sheared flow profiles in the duct

— Successfully applied to liner samples in the GFIT and CDTR
Limitations:

— Applicable only to 2D or quasi-3D sound fields

— Not applicable to ducts with peripherally varying impedance
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Research Objectives

 To develop an impedance eduction code that
— Accounts for 3D sound fields

— Accounts for peripherally varying wall impedance

« To validate the 3D code using measured GFIT data by
— Comparing 3D results to that educed from the 2D code

— Comparing results of a peripherally varying three-
segmented liner to that of a known impedance spectra



Measurement Apparatus
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Boundary Value Problem
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« Solve the convected Helmholtz's Equation
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« Use the source/exit plane pressures as inflow/outflow BC’s
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* The Myers wall impedance boundary condition along the liner
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Impedance Eduction
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Solve the 3D boundary value problem using the finite element
method (FEM) and obtain the acoustic pressure field, p

Construct the quadratic objective function, F(0,X)

m=nmic

F(T?’,X)= E ”pMeas(Zm’xm’ym)_pFEM(Zm’xm’ym)”
m=1

Find the Minimum of this objective function using a local
gradient-based optimizer to obtain the unknown impedance
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Peripherally Varying Liner
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Scatters energy into spanwise duct modes (3D effect)
Impedance of aluminum tape is set to that of a rigid wall

The impedance of the soft segment is identical to that
of the conventional liner

Same liner is being tested by the French aerospace
company (ONERA) using Laser Doppler Anemometry



Test Conditions
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Data acquired in the GFIT (2 inch x 2.5 inch cross-section)
Each liner (wire-mesh and conventional) is 24 inches long
Three uniform flow Mach numbers

— Wire mesh liner (Mach 0.0, Mach 0.3, Mach 0.5)

— Conventional liner (Mach 0.0, Mach 0.2, Mach 0.3)
Frequency range of interest, f=0.4 to 3.0 kHz

Data acquired at 87 microphones around duct perimeter



Comparison of 2D and 3D Codes (Mach 0.5)

Microphone data acquired from exact mode solution
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Comparison of 2D and 3D Codes (Mach 0.5)

Microphone data measured in the GFIT
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v' 2D and 3D codes are in excellent agreement except at

frequencies of low attenuation
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Comparison of 2D and 3D Codes

Microphone data measured in the GFIT

5r 10—

/\ Mach 0.0 (2D Code) 9 /\ Mach 0.0 (2D Code)
asf [V>Mach 0.0 (3D Code) 3 [V> Mach 0.0 (3D Code)
Mach 0.2 (2D Code) Mach 0.2 (2D Code)
4 [~ < Mach 0.2 (3D Code) 6 [~ <] Mach 0.2 (3D Code)
V] ()Mach 0.3 (2D Code) O 5 <> Mach 0.3 (2D Code)
8 3.5 (O Mach0.3 (3D Code) g 4 | O Mach 0.3 (3D Code)
3 8 3}
8 3 O oL
g g
; £ 8%
o 251 - O s ® & 8 8
0 Q 4| 8 ©
2 4 © Sefa®
© "
E L O 0 £ -3§
2T 8 6 8 O g 2 3t
Teggdtol,s? o
g ¥ bpk®
0.5¢¢ XX o % -g -
0 # ? e e | “ ¥ ! % I -10 . - - 1
1 2 2.5 0.5 1 1.5 2 2.5
Frequency in kHz Frequency in kHz

v' 2D and 3D Codes are in excellent agreement except at
resonance and frequencies above cuton of higher order modes
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Comparison of Uniform and Segmented liner

Microphone data measured in the GFIT
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v Impedance of uniform and soft segment of three-segmented

liner are in good agreement
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Conclusions

* The current 3D method educes the impedance spectra to
design order with exact input data

 When GFIT data is used with the uniform-structure test
samples, the 3D theory reproduces the same impedance
spectra as the 2D theory except for frequencies
corresponding to very low or very high liner attenuation

* When the educed impedance of the uniform-structure liner
iIs compared to that of the soft portion of the three-
segmented liner, good agreement is generally obtained
except for those frequencies corresponding to extremely
large attenuation
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Comparison of SPL for Uniform and Segmented Liner
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Comparison of SPL for Uniform and Segmented Liner
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Normalized Reactance
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