Hypersonic Materials and Structures

SAMPE
Baltimore, MD
May 18-21, 2015

David E. Glass, Ph.D.
NASA Langley Research Center, Hampton, VA
Outline

♦ Introduction
♦ Vehicle components
♦ Technical challenges
♦ Concluding remarks
<table>
<thead>
<tr>
<th>Rockets vs. Airbreathers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockets</td>
</tr>
<tr>
<td>♦ Don’t like the atmosphere</td>
</tr>
<tr>
<td>● Accelerate only</td>
</tr>
<tr>
<td>● Get out quick</td>
</tr>
<tr>
<td>● Tend toward vertical launch</td>
</tr>
<tr>
<td>● Low ISP</td>
</tr>
<tr>
<td>♦ Drag</td>
</tr>
<tr>
<td>● High drag not a problem on ascent, desirable on descent for deceleration</td>
</tr>
<tr>
<td>● Blunt leading edges</td>
</tr>
<tr>
<td>♦ Weight critical</td>
</tr>
<tr>
<td>● Mass fraction ~ 10% of GTOW</td>
</tr>
<tr>
<td>● Requirement to be weight sensitive</td>
</tr>
<tr>
<td>♦ Engine in back</td>
</tr>
<tr>
<td>● Weight drives components to be clustered near engine</td>
</tr>
<tr>
<td>● Tail heavy</td>
</tr>
<tr>
<td>● Hard to get forward c_g</td>
</tr>
<tr>
<td>● Highly compressive loaded structure</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Structural Differences Between Rockets and Airbreathers

- **Tanks**
 - Cylindrical, since vehicle is weight sensitive and volume insensitive

- **TPS**
 - Driven by descent
 - Low heat load due to short ascent

- **Leading edges**
 - Blunt, due to desire for descent drag
 - High heat flux

- **Structure**
 - Lightly loaded wings
 - Propulsion and airframe not highly integrated

- **Tanks**
 - Conformal, since vehicle is drag, and thus volume, critical

- **TPS**
 - Driven by ascent
 - High heat load due to long ascent time

- **Leading edges**
 - Sharp, due to low drag, low thickness/chord
 - Severe heat flux

- **Structure**
 - Highly loaded wings (some air breathers)
 - Hot wings and control surfaces due to thin cross sections and high heat flux/load
 - Propulsion and airframe highly integrated

Drag is the big driver for hypersonics
Hypersonic Vehicles

♦ Goal
 • Speed
 • Range

♦ Propulsion
 • Provide thrust

♦ Aerodynamics
 • Provide lift
 • Control the vehicle
 • Minimize drag

♦ Structures and materials
 • Minimize weight
 • Survive required mission
 ▪ Thermal / structural
 ▪ Acceleration
 ▪ Acoustic / vibration
 ▪ Environmental

♦ Weight reduction
 • High specific strength materials
 (high strength, low density)

♦ Drag reduction
 • Thin vehicle cross-sections
 □ Insulating a cold structure adds cross-sectional area
 • Sharp leading edges
 • Smooth surfaces

Thrust

Lift

Weight

Drag

Hot structures
Flight Vehicle Thermal Management

- Hot Structure
- Insulation
- Active cooling

T, K

3000
2000
1000
0

Exposure Time, hr

0
1
2

Apollo
Ablators
Mercury
Insulation Shuttle
Hot Structure
Hot Structure
SR-71
x-15
Heat Sink
History Shows That New Material Systems Help Enable the Vehicle

- Titanium
- Inconel
- Ceramic tiles and blankets
- C/C leading edges
- Ceramic Matrix Composites (CMC’s)
- SR-71
- X-15
- Orbiter
Material Specific Strength

CMC’s are the material system that will provide the required strength at elevated temperature.
CMC Hot Structure Weight Savings

- **Space Shuttle Orbiter Body Flap (AIAA-1983-913)**
 - Baseline 1460 lb, insulated cold structure
 - ACC body flap 1207 lb (253 lb, 17% weight savings)

- **HSR (NASA High Speed Research program) SiC/SiC Combustor Liner**
 - Projected 30% weight savings
 - Reduced NOx and CO emissions due to higher temp

- **X-38 C/SiC Hot Structures**
 - Bearings 50% lighter weight than traditional bearings
 - Body flap 50% less than insulated cold structure (5.25 ft x 4.6 ft, 150 lb)
 - Rudder (different design temperature)
 - PM-1000 with Ti inner structure and insulation: 133 lb with growth factor of ~ 5%
 - CMC: 97 lb with higher growth factor (27% weight savings)

- **Aircraft brakes**
 - 500-1000 lbs per plane weight savings

- **Actively cooled CMC combustor (French study, AIAA-2011-2208)**
 - 30% weight savings over metallic

Rule of thumb, ~ 25% weight savings with CMCs
Key Point – Drag Reduction

♦ Reentry vehicles (most of our prior experience), want drag to reduce velocity as they reenter.

♦ Cruise vehicles must minimize drag as they cruise through the atmosphere.
 ● Surface and cross-section

♦ Hot structure is the preferred approach (rather than TPS over cold structure)
 ● Large, smooth, hot airframe has not been addressed
A Few General Thoughts

♦ Weight is always critical

♦ High risk ≠ high payoff
 ● Might be, but not an automatic

♦ Requirements have a significant impact on TRL
 ● Number of cycles
 ● Mechanical loads
 ● Pressure (oxidation)
 ● Heat flux
 ● Etc.

♦ Thinking of how much it will cost to develop a technology is often a better gage of how far away we are than asking how long it will take
Leading Edges

♦ **State of the art**
 - Space shuttle orbiter RCC
 - Hyper-X coated C/C
 - HTV-2 oxidizing C/C

♦ **Requirement**
 - Multi-use
 - Light weight
 - Durable
 - Sharp

♦ **Technical challenges**
 - Manufacturing
 - Life
 - Thermal stress
 - High heat flux / temperature
 - Environmental durability
Typical Ascent Leading-Edge Heat Flux for SSTO

In comparison, Shuttle Orbiter leading edge ~ 80 W/cm², CEV heatshield ~ 800 W/cm²
Leading-Edge Radius Effect on Stagnation Heat Flux

Heat flux, \(\alpha \) \(\frac{1}{\sqrt{\text{radius}}} \)

1 cm radius, 500 W/cm\(^2\)

Heat flux, W/cm\(^2\)

Radius, cm
Sharp leading edges produce intense, localized heating.
Active Oxidation of Si-Based Materials

- Transition from passive to active oxidation function of
 - Temperature
 - Oxygen partial pressure
 - Plasma speed
 - Degree of dissociation

- Destroys protection of Si containing system
 - C/SiC
 - SiC/SiC
 - Coated C/C
 - UHTC
 - … etc.

Arc-jet test of DLR C/C-SiC for X-38 at NASA JSC

Arc-jet test of MT Aerospace C/SiC in the German PWK2 facility
Heat-Pipe-Cooled Leading Edges

Heat pipe results in an isothermal leading edge.
NASP Heat-Pipe-Cooled Wing Leading Edge

- **Carbon/carbon (C/C) structure**
- **Mo-Re container**

Challenges
- Material compatibility, f(t,T)
- Thermal stresses

- Mo-Re embedded in C/C
- Li working fluid
- D-shaped heat pipes
Control Surfaces

♦ **State of the art**
 - Space shuttle orbiter (insulated)
 - X-38 (CMC hot structure)
 - HTV-2 C/C
 - NASA X-37 evaluated C/C and C/ SiC

♦ **Requirement**
 - High strength at elevated temperature
 - Light weight

♦ **Technical challenges**
 - Volume constrained
 - Manufacturing
 - Recession / stressed oxidation
 - Thermal stress
 - High heat flux / temperature
 - High heat load
 - Heat conduction into vehicle / insulation
Types of Control Surfaces

♦ Insulated
 • Suitable for very large structures
 • Minimal thermal expansion issues
 • Heavy
 • Little thermal margin
 • Thick cross section

♦ Hybrid
 • Affordable manufacturing for large structures
 • May not require TPS on upper surface
 • Thermal growth mismatch between metal/PMC and CMC
 • Weight increase 30-40% over all CMC

♦ Hot Structure
 • Lowest weight and thin cross section
 • Minimal thermal expansion mismatch problems
 • Thermal margin
 • High manufacturing/tooling costs for box structure
 • Challenging for very large structures
X-38 Hot Structures

- **C/SiC nosecap, skirts & chin panel**
 - Nosecap provided by DLR (Germany)
 - Nose skirts (2) provided by Astrium (Germany)
 - Chin panel provided by MT Aerospace
 - Nose assembly has undergone full qualification (qual units)
 - Vibration
 - Thermal (radiant)
 - Mechanical

- **C/SiC body flaps**
 - Provided by MT Aerospace
 - Qualified for flight
Dutch Space Metallic Hot Rudder

X-38 hot rudder

- Fabricated and tested a PM-1000 rudder to 2192°F (1200°C) in 1 yr
- Requirements changed
- Qualified Ti/ceramic tile rudder (1 yr)
- Planned Ti/CMC rudder for crew return vehicle (CRV)
MT Aerospace Integrated Fabrication Approach

♦ **Advantages**
 - Fewer joints
 - Better mechanical performance

♦ **Disadvantages**
 - Complex tooling and associated fabrication expense
 - Risk of damage during fabrication

♦ **Fabrication**
 - 2-D prepreg of carbon fabric
 - Cured and pyrolyzed
 - Further densified with CVI SiC
 - No fasteners (less mass)
Acreage TPS / Hot Structure Aeroshell

♦ State of the art
 ● Ceramic tiles and blankets
 ● Ablators
 ● Oxidizing C/C hot structure

♦ Requirement
 ● Durable
 ● Thin cross section
 ● Smooth OML
 ● Insulate interior (keep the heat out)

♦ Technical challenges
 ● Manufacturing
 ● Durability
 ● High temperatures
 ● Large heat load due to extended duration flight
 ● High temperature insulation
 ● Combined loads
Trade studies required on how to best meet requirements and optimize performance – need to keep trade space wide open
Windward CMC Standoff (Shingle) TPS (Sncema, IXV)

- Total mass of CMC shingle system
 - ~3 lb/ft² (15 kg/m²) (very much f(req.))
 - Not optimized

- Attachment system design
 - Mechanically attach panel to structure
 - Transfer loads from panel to structure
 - Enable expansion differences
 - Prevent large OML deformation through sufficient stiffness
 - Participate in thermal protection of structure
 - Easily replaced

- C/SiC pressure ports
 - 10 windward

- Sealing approaches

- Curved C/SiC panel (IXV side panel)
Internal Insulation

♦ Light-weight
♦ Flexible
♦ Non load-bearing
♦ Non-oxidizing
♦ Reflective foils or no foils
♦ High volumetric heat capacity
♦ Low effective thermal conductivity
♦ Capable of long duration flight at elevated temperatures
Propulsion Structures

♦ State of the art
- Passive heat sink
- Actively cooled superalloy

♦ Requirement
- Light weight
- High heat flux/temperature
- Reduced fuel

♦ Technical challenges
- Hermetically sealed CMC with no tubes
- Manifold

♦ MBDA (France)
- Fuel cooled CMC combustor
- No metallic tubes

♦ NASA & AF (Teledyne Scientific)
- Last funding several years ago
- No tubes

♦ NASA (HyperTherm)
- SiC/SiC with refractory metal tubes
Passive CMC Combustor Material Evaluation

- **Simulated Mach 6 conditions**
 - Actual flow velocity ~ Mach 2
 - \(q = 1000 \text{ psf} \) (479 hPa)
 - \(H = 793 \text{ Btu/lb} \) (1.846 MJ/kg)

- **Hydrogen fuel**

- **4 tests**
 - M ~ 6 enthalpy
 - 20 sec tare (no fuel)
 - 3 x 44 sec fueled tests

- **C/C-SiC Panel #1 Post Test**
 - 4 tests
 - M ~ 6 enthalpy
 - 20 sec tare (no fuel)
 - 3 x 44 sec fueled tests

DLR C/C-SiC test article

C/C-SiC hot surface, post test
Design and Manufacturing

- **Design for manufacturing**
 - Involve manufacturers in the process
 - Don’t “throw it over the wall”

- **Properties in a complex structure are often different than material test coupons**

- **Attachments and joints**
 - Different material systems
 - Severe thermal gradients in multiple directions
 - Mechanical loads

- **Metrology often “required” for accurate fabrication and assembly**
 - Optical / laser devices
 - Accuracy to < 0.001 in., f(size)

- **TRL = f(requirements / loads)**
 - Can’t change the requirements / loads and keep the TRL

- **Affordable, robust, & simple**

A state-of-the-art material is not the same thing as a state-of-the-art structure

Big difference!
How do we qualify the vehicle for flight?

We are unable to test many components in relevant, combined loads, environments (even small scale)
- Thermal, mechanical, plasma, shear, oxygen partial pressure, vibration and acoustic, etc.
- Apply appropriate boundary conditions over entire structure
- Thermal gradients (spatial and temporal) from boundary layer transition

Thermally generated stress ≠ mechanically generated stress

Extensive testing is required
- Performance testing and benchmarking for analyses

Building block approach

Test as much as you can, and still include adequate margins for uncertainties
Thermal-Structural Analysis

♦ Adequate material properties
 ● f(T), f(processing), etc.
 ● Adequate quantities (shape of curve and statistics)
 ● Capture non-linear behavior

♦ Boundary conditions
 ● Thermal, mechanical
 ● Boundary layer transition

♦ Mesh convergence

♦ Local / global models
 ● Apply global loads to local models

♦ Mechanical / thermal stresses

♦ Factors of Safety (FOS)

♦ Failure modes
 ● Biaxial stress interaction
 ● Thermal ≠ mechanical failure
Thermal Stress

- **Generated by restrained thermal growth**
 - Temperature gradients and / or different materials (CTE)

- **Very different from mechanical stresses**
 - Driven by thermal gradients, not just high temperatures
 - Thicker structure can make it worse
 - Structurally connected, dissimilar materials, also drive thermal stress

- **Complicated by different materials, 3-D thermal gradients, moving hot spots, asymmetric heating, etc.**

SR-71 grows ~ 3 in. during flight

Thermal stress must be understood and accurately tested and modeled
Concluding Remarks

♦ Reduction of weight and drag are key for all hypersonic vehicles

♦ A state-of-the-art material is not the same thing as a state-of-the-art structure

♦ TRL = f(requirements / loads)
 ● Can’t change the requirements / loads and keep the TRL

♦ Long duration flight results in high integrated heat loads that impact design

♦ Hot structure should be traded versus insulated (TPS) cold structure
 ● Open up the trade space

♦ Thermal stress must be understood and accurately tested and modeled