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TBW Phase | Findings, Phase Il Objectives
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Wind-Tunnel Test Objectives

« Determine Experimental Flutter
Boundaries

* Investigate Active Flight Controls
- System ID
- Flutter Suppression
- Assess Effects of FS on Gust
Response
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TBW Aeroelastic Wind-Tunnel Model
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TBW Model Instrumentation
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Transonic Dynamics Tunnel
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TBW Modes and Frequencies @

Wing 2"d out-of-plane bending mode Wing 18t torsion mode

Pre-Holiday (Hz) Post-Holiday (Hz) Description
Mode | GVT FEM19 GVT FEM20
1 5.20 5.12 5.08 5.04 1%* out-of-plane wing bending

3 9.08 0.17 8.43 8.44 25 out-of-plane wing bending
4 | 1135 1134 1114  11.28 1** wing/nacelle torsion

5 19.56 1853  18.62 18.46 wing bending

7

2844 2744 2757 2713 wing/nacelle torsion/bending
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Flutter Boundary Summary
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Analysis/Test Comparison
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ASE and CL Testing

e Open Loop System ID
— Sine sweeps to control surfaces for ASE model verification and system ID
— Dwell/Decay for estimating modal damping
* Flutter Suppression Control Laws
— LQR based control law for each ASE model
— System ID based control law (2)
* Derived from two experimental data points

— Linear sine sweeps to each surface at two stable tunnel
conditions

— AOA=-3°
— FEM 19 based control laws (18)
* ASE models derived from version 19 of NASTRAN FEM
» 18 ASE models used, including OL stable and unstable
— Control laws were scheduled based on Mach and dynamic pressure
 Gust Response
— Back to back OL and CL data points acquired with AOS frequency sweep
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Closed Loop Results, AOA <O

200

O Closed- T
@ Closed-loop stable: sysID based controller | H=5
=== Flutter boundary e

150

AOA -3

100

Dynamic Pressure, psf

200

150

AOA -1

100

Dynamic Pressure, psf

Mach Number

Fixed Wing Project
Fundamental Aeronautics Program



Closed Loop Results, AOCA>0
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FEM19 Controller OL/CL @ Unstable Condition@
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Flutter Suppression @
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OL/CL Gust Response, FEM19 Based Control
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Conclusions

Open-Loop Flutter Boundaries Established
— Flutter Boundaries a Function of Aerodynamic Loading (Angle of Attack)
— Boeing NASTRAN/MDO Approach Validated/Improved

* Importance of Static Nonlinear Effects Established

« The TBW Configuration Remains A Viable Concept For Reducing Transport Aircraft Energy
Consumption

Flutter Suppression Control Laws Designed & Demonstrated

— Control Laws Designed using ASE Models Derived From Both Open-Loop
Experimental Data and the NASTRAN FEM

— Close Loop Dynamic Pressures of at Least 25% Above the Open Loop
Boundary Were Demonstrated

— Viability of Flutter Suppression for TBW N+3 Concept Established
— Flutter Suppression Controllers Provide Small Gust Load Alleviation Benefit

Model Status
— Survived Several Hard Flutter Points
— NASA Retained Ownership, Available for Future Testing

Documentation
— SciTech 2014 (2)
— Contractor Reports (2)
— SciTech 2915 Special Session

— Aviation 2015 (1)
Fixed Wing Project
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Truss-Braced Wing: Wing Weight Uncertainty

PROBLEM

Conceptual design of Truss-Braced Wing (TBW) configuration during the N+3

phase 1 study showed significant potential of this technology to contribute to
meeting NASA N+3 goals, but also highlighted a significant uncertainty in the
wing weight estimate.

OBJECTIVE
Refine the TBW configuration and reduce the uncertainty in the potential
benefits with specific focus on reducing the uncertainty of the wing weight.

APPROACH

Create a detailed finite element model (FEM) of the TBW configuration to
provide a higher fidelity weight estimate of the concept; validate the FEM via
a transonic aeroservoelastic (ASE) test in the NASA Transonic Dynamics
Tunnel (TDT).

RESULTS

A high fidelity weight estimate was completed which showed favorable wing
weights and significant improvement in fuel burn. The ASE test was used to
validate and update the wing weight estimate which increased 463 Ibs
(22,577 b wing).

SIGNIFICANCE

The TBW configuration remains a viable concept for reducing transport
aircraft energy consumption. The validated detailed FEM enables credible
weight and fuel burn estimates that justify further investigations of the TBW
concept. Based on these results, an aerodynamic performance test and

evaluation is going forward that will show that high-order aerodynamic design

and analysis tools can be used to predict the performance of a low-
interference truss braced wing.
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Documentation

Contractor Final Reports
1. Bradley, M. K. and Droney, C. K., “Subsonic Ultra Green Aircraft
Research: Truss Braced Wing Design Exploration,” Contractor report,
The Boeing Company, June 2014.
2. Bradley, M. K., Droney, C. K., and Allen, T. J., “Subsonic Ultra Green
Aircraft Research: Truss Braced Wing Aeroelastic Test Report,”
Contractor report, The Boeing Company, June 2014

AlAA Conference papers
1. Coggin, J., Kapania, R., et. al., “Nonlinear Aeroelastic Analysis of a Truss
Braced Wing Aircraft”, SciTech, No. AIAA-2014-0335, National Harbor,
Maryland, January 2014.
2. Bartels, R. E., Scott, R. C., Allen, T., Sexton, B., and Funk, C.,
“Computed and Experimental Flutter/LCO Onset for the Boeing Truss-

Braced Wing Wind-Tunnel Model,” 32nd AIAA Applied Aerodynamics
Conference, No. AIAA-2014-2446, Atlanta, GA, June 2014.
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FY15 Documentation

« Contractor Final Report -> submit for publication as a NASA CR
 AIAA SciTech, January 2015

— Bradley, M., “Final Results of the Subsonic Ultra Green Aircraft Research
(SUGAR) Study”

— Special Session Sponsored by SDTC & GEPC

1. Allen, Timothy J. [The Boeing Company], "SUGAR Truss Braced Wing Full Scale
Aeroelastic Analysis and Dynamically Scaled Wind Tunnel Model Development”

2. Scott, Robert C. [NASA], "Aeroservoelastic Wind-Tunnel Test of the SUGAR
Truss Braced Wing Wind-Tunnel Model”

3. Bartels, Robert E. [NASA], "Nonlinear Aeroelastic Analysis of SUGAR Truss-
Braced Wing Wind-Tunnel Model Using FUN3D”

4. Zhao, Wei [Virginia Tech], "Nonlinear Aeroelastic Analysis of SUGAR Truss-
Braced Wing (TBW) Wind-Tunnel Model (WTM) under In-plane Load”

5. Mallik, Wrik [Virginia Tech], "Aeroelastic Analysis and Optimization of Truss-
Braced Wing Aircraft with Novel Control Effectors”

6. Chen, P. C. [ZONA], "Low-Weight Low-Drag Truss-Braced Wing Design using
Variable Camber Continuous Trailing Edge Flaps”

 AIAA Aviation, June 2015

— Bartels, R., Scott, R., and Funk, C. “Analysis of Limit Cycle Oscillation Data from
the Aeroelastic Test of the Boeing SUGAR Vehicle”
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Flow Through Nacelle and Active Control Surfaces @

Flow
Through

/ Nacelle

' Low Speed Aileron
Side-wall High Speed

Mounted strut  Alleron

Fixed Wing Project
Fundamental Aeronautics Program

26



Boeing Weight Results with Resized FEM

o | FIE Tesi Post Test
Config 1 |Config 1 |Delta Config 1
No Flutter|1.15VD 1 1avD
Skins ooa/ 8 5689.1

Spars 76508 828.4
Ribs 718 3
Spar Caps 250.0
Rib Caps

Strut

Jury

Gear Pylon 2D
Gear Pylon 1D
Total

1252
11768 .4

12114.0

Updated flutter penalty increases to 809 |b
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Dynamically Scaled Model

Full-Scale Data - Full Span Values

Fixed Wing Project

Fundamental Aeronautics Program

Weight (Ib)| Span (ft) Mach Vel (KEAS)
143164 170 0.82 400
Full-Scale Data - Half Span Values
Weight (Ib)| Span (ft) Mach|Altitude (ft)] Dyn Pres (psf)| Density (s/cf)| Velocity (fps) Re
29530 85| 0.8200f 15915.36 542.47 0.001451 864.56| 4.35E+07
Basic Scale Factors Derived Scale Factors
Length| Density| Velocity Mass| Acceleration Force Stiffness| Frequency| Dyn Pres
0.150| 1.1000f 0.5211] 0.003713 1.8103 0.0067 21 1.5122E-04 3.4740 0.2987
R134a
Model-Scale Data
Weight (Ib)| Span (ft) Mach|n Pres (psf)| Density (s/cf)| Velocity (fps) Re
109.63 12.75 0.820 162.03 0.001597 450.52 5.07E+06
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Truss-Braced Wing: Wing Weight Uncertainty

Phasel Phasell

Phase | Findings : : _ '

. . . . ! ' Conventional ! @ I
Conceptual design of Truss-Braced Wing (TBW) configuration 90 Lo . L -Configuration: - - - -~ - -
during the N+3 phase 1 study showed significant potential of this : : '
technology to contribute to meeting NASA N+3 goals, but also
highlighted a significant uncertainty in the wing weight estimate.

Phase Il Objectives

Refine the TBW configuration and reduce the uncertainty in the
potential benefits with specific focus on reducing the uncertainty
of the wing weight.

Block Fuel / Seat (lb)

Phase Il Approach
Create a detailed finite element model (FEM) of the TBW
configuration to provide a higher fidelity weight estimate of the
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FEM 19 and FEM 20 Differences &
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Skin / Pod Design

= Skin created from
carbon \ epoxy matrix

» Segmented into pods
to prevent stiffness
addition to spar

= Attached to spar via
ribs, which provide
support along the
entire chord

* Additional optional
skin reinforcement
provided by stiffener
tubes, located at
leading and trailing
edges

Segmented Spar
skin ¢'

Stiffeners
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Wind-TunModel FEMSs
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Pre-Holiday Flutter w/ NASTRAN Analyses
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NASTRAN Flutter Analysis

Mach, Alpha, Q Steady Aerodynamic
\ C/orrections
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Control Systems
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Control Law Design Block Diagram
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