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(57) ABSTRACT

An efficient method and system for real-time or offiine analy-
sis of multivariate sensor data for use in anomaly detection,
fault detection, and system health monitoring is provided.
Models automatically derived from training data, typically
nominal system data acquired from sensors in normally oper-
ating conditions or from detailed simulations, are used to
identify unusual, out of family data samples (outliers) that
indicate possible system failure or degradation. Outliers are
determined through analyzing a degree of deviation of current
system behavior from the models formed from the nominal
system data. The deviation of current system behavior is
presented as an easy to interpret numerical score along with a
measure of the relative contribution of each system parameter
to any off-nominal deviation. The techniques described
herein may also be used to "clean" the training data.
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SYSTEM AND METHOD FOR OUTLIER
DETECTION VIA ESTIMATING CLUSTERS

This patent application claims the benefit of U.S. Provi-
sional Patent Application No. 61/662,866, filed Sep. 26,
2011, which is incorporated by reference in its entirety
herein.

ORIGIN OF INVENTION

The invention described herein was made by employees of
the United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

BACKGROUND OF INVENTION

1. Technical Field of the Invention
This invention relates generally to the field of automated

system and anomaly detection and, in particular, to methods
of generating system monitoring knowledge bases from
nominal system behavior, and to the use of these knowledge
bases in monitoring system performance in real-time or near-
real time.

2. Description of Related Art
The modern information age provides great quantities of

raw data concerning the performance of man-made engi-
neered systems as well as data concerning the behavior of
natural systems. Numerous information processing tech-
niques have been employed to attempt to classify such data,
look for anomalies, or otherwise assist humans to extract,
understand and/or respond to information contained in the
data. Examples of such techniques include model based rea-
soning, machine learning, neural networks, data mining, sup-
port vector machines, and various decision tree models
including ID3 decision tree learner, among many others.
However, these techniques typically have one or more draw-
backs that render them unsuitable or disfavored for some
applications.

For example, model based reasoning and related tech-
niques typically require a detailed engineering simulation of
the system under study, often including expert knowledge of
system behavior, detailed behavior of system components
and subsystems, and detailed knowledge of interactions
among system components and failure mechanisms, among
other things. Such knowledge may not be available for all
components and subsystems. Furthermore, even when a rea-
sonably accurate system simulation is available, it often
requires impractical amounts of computer resources. That is,
the simulation may execute too slowly to provide information
in real-time or near-real time so as to be unsuitable for many
practical system monitoring applications. In addition, the
computer resources may not be available in space-limited or
weight-limited environments such as space vehicles. Thus, a
need exists in the art for computationally rapid techniques to
monitor the performance of a system and detect anomalous
behavior without the need for excessive computer resources.
Some classification or decision models require that the

system be trained with data that include data derived from
both normally-functioning systems (nominal data) as well as
data derived from anomalous system behavior (off-nominal
data). In many practical applications, off-nominal data are
unavailable for training, and even the nominal data available
for training may not fully explore all of the system's nominal
operating regimes. Thus, a further need exists in the art for

2
techniques to monitor a system's performance that does not
require off-nominal data for training.

U.S. Pat. No. 7,383,238, which issued on Jun. 3, 2008, and
has a common inventor and assignee as this invention, dis-

5 closes an attempt to overcome some of the shortcomings
identified above. In particular, the '238 patent discloses a
learning algorithm that automatically extracts system models
from archived system data. The '238 patent further discloses
using the system models to find outlier data points. However,

10 despite its improvement over the prior art, the techniques
disclosed in the '238  patent are still lacking due to the fact that
they only utilize the single best matching data point to deter-
mine an outlier. The use of a single best matching data point
may be problematic where the single best matching data point

15 is itself an outlier. It would be a significant improvement over
the teachings of the '238 patent to utilize multiple data
samples in a model rather than just the single best matching
data point to reduce the possibility that an off nominal data
point will go undetected because of a similar off nominal data

20 point in the training data. The '238 patent is hereby incorpo-
rated by reference in its entirety as if fully set forth herein.
The features and advantages of the present disclosure will

be set forth in the description that follows, and in part will be
apparent from the description, or may be learned by the

25 practice of the present disclosure without undue experimen-
tation. The features and advantages of the present disclosure
may be realized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims.

30

SUMMARY OF THE INVENTION

Accordingly and advantageously, the present invention
relates to a system, method, and software implementations

35 for building one or more system monitoring knowledge bases
that are subsequently used to monitor a system's perfor-
mance. The system, method, and software implementations
disclosed herein analyze nominal system data and form
classes or clusters of expected system sensor values, some-

40 times referred to herein as cluster modeling data. These clus-
ters are used in building a system monitoring knowledge base.
In an embodiment of the present disclosure, the clusters in

the monitoring knowledge base are grouped according to
their distances from an indexing reference point. In particular,

45 those clusters having distances from the indexing reference
point that fall within one of a plurality of predetermined
partitions are grouped together. In an embodiment of the
present disclosure, the number of training points in each
cluster is included in the monitoring knowledge base.

50 Monitoring knowledge bases can be constructed entirely
from several sets of nominal sensor data, either gathered
directly from the sensors of the system to be monitored during
actual operation, or gathered from system simulations, or
both. Thus, among the advantages of the present invention is

55 that off-nominal data are not needed to train the system.
Further advantages of the present invention include avoiding
the complexity and expense of constructing a detailed system
model that may require many hours of expert time to create
and/or significant computer resources to run.

60 When a query point is received, the system, method, and
software implementations of the present invention generate a
list or group of closest clusters in the knowledge base that is
closest to the query point. To ensure that the query point is not
compared to an off-nominal data point, the aggregate number

65 of training points in the list or group of closet clusters must
meet a user-defined threshold value. Once the list or group of
closest clusters to the query point is determined, and the
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aggregate number of training points in the list or group of
closest clusters meets or exceeds the user defined threshold
values, the distance between the query point and each of the
clusters in the list or group is determined. These individual
distances may then be weighted by the number of points in the
relevant cluster. This ensures that clusters with more training
points are more heavily weighted than clusters with fewer
training points. A single summary distance value may then be
generated by combining the weighted distance values
between the query point and each of the clusters.

In an illustrative embodiment of the present disclosure, the
summary distance value may then be standardized to allow
the results to be expressed relative to common statistical
measures, such as standard deviation. For example, standard-
ization may be done by calculating the standard deviation, or
another statistical measure, of all of the training points from
their N nearest neighbor points. The standard deviation may
then be utilized to normalize the summary distance value. In
this manner, the present invention provides the ability to
analyze the knowledge base to determine the statistical dis-
tribution of the training points used to construct the model.
The standardization of the summary distance value allows the
results to be more consistent across systems and easier to
interpret than previous results, which were previously not
standardized.

In an illustrative embodiment of the present disclosure, the
uniqueness of a multivariate data set, i.e., query point, from its
N nearest neighbor points can be determined using the sys-
tem, method, and software implementations of the present
invention. Larger distances indicate that a query point is more
unusual than others in the data set. In an illustrative embodi-
ment of the present disclosure, every incoming query point is
assigned a standardized deviation score.

If the incoming query point's standardized deviation score
is sufficiently close to expected values, the system is deemed
to be functioning normally since it is sufficiently close to
previous normal behavior. "Sufficiently close" is determined
by threshold parameters supplied by the user to take into
account that training data will not generally span the entire
space of normal system operation, and the sensor data from
nominally operating systems are inherently subject to a level
of "noise," causing deviations in data received from sensors
even for identically-operating systems.
An illustrative embodiment of the present disclosure may

also determine a measure of the relative contribution of each
individual parameter of a query point to its standardized
deviation score, which can be useful for fault isolation and
diagnosis.

These and other advantages are achieved in accordance
with various embodiments of the present invention as
described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the disclosure will become
apparent from a consideration of the subsequent detailed
description presented in connection with the accompanying
drawings in which:

FIG. 1 depicts a high-level block diagram of an inductive
monitoring system pursuant to an illustrative embodiment of
the present disclosure.

FIG. 2 depicts a diagram of a typical data vector usedby the
inductive monitoring system of FIG. 1.

FIG. 3 depicts an exemplary data vector as used by the
inductive monitoring system of FIG. 1.

FIG. 4 depicts a diagram of a typical cluster of the cluster
database of FIG. 1.

4
FIG. 5 depicts an exemplary cluster having a pair of data

vectors showing maximum and minimum values for the
parameters.
FIG. 6 depicts an example of a two-dimensional minimum

5 bounding rectangle for an exemplary cluster.
FIG. 7 depicts a flowchart of an illustrative embodiment of

a technique to generate a cluster database by the inductive
learning module of FIG. 1.

FIG. 8 depicts a flowchart of an illustrative embodiment of
10 another technique to generate a cluster database that scales or

normalizes at least a subset of the input parameter values of
the input vector of the inductive learning module of FIG. 1.

FIG. 9 depicts a block diagram of a computer system for
implementing the methods and techniques of an illustrative

15 embodiment of the present invention.
FIG. 10 depicts a flowchart of an illustrative embodiment

of a technique to group clusters in the cluster database by the
outlier detection module of FIG. 1.
FIG. 11 depicts a chart of an illustrative embodiment of a

20 technique to group clusters.
FIG. 12 depicts exemplary cluster modeling data deter-

mined using the technique described in FIG. 10.
FIGS. 13A-13C depict a flowchart of an illustrative

embodiment of a technique to determine if a query point is an
25 outlier.

FIG. 14 depicts a chart of an illustrative embodiment of a
technique to determine if a query point is an outlier.

FIG. 15 depicts a chart of an illustrative embodiment of a
technique to determine if a query point is an outlier.

30

DETAILED DESCRIPTION

For the purposes of promoting an understanding of the
principles in accordance with the disclosure, reference will

35 now be made to the embodiments illustrated in the drawings,
and specific language will be used to describe them. It will
nevertheless be understood that no limitation of the scope of
the disclosure is thereby intended. Any alterations and further
modifications of the inventive features illustrated herein, and

4o any additional applications of the principles of the disclosure
as illustrated herein, which would normally occur to one
skilled in the relevant art and having possession of this dis-
closure, are to be considered within the scope of the disclo-
sure claimed.

45 It must be noted that, as used in this specification and the
appended claims, the singular forms "a," "an," and "the"
include plural referents unless the context clearly dictates
otherwise. As used herein, the terms "comprising," "includ-
ing," "having," "containing," "characterized by," and gram-

50 matical equivalents thereof are inclusive or open-ended terms
that do not exclude additional, unrecited elements or method
steps.
Many of the functional units described in this specification

have been labeled as "modules" to more particularly empha-
55 size their implementation independence. For example, a

module may be implemented as a hardware circuit compris-
ing custom VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program-

60 mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices, or the like. A module may also be implemented by a
processor coupled to a memory, the memory containing com-
puter-readable instructions, that when executed by a proces-

65 sor, cause the processor to perform the identified tasks. A
module may include multiple processors and multiple memo-
ries, that when grouped together, perform the identified tasks.
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Modules are also implemented in software for executionby
various types of processors. An identified module of execut-
able code may, for instance, comprise one or more physical or
logical blocks of computer instructions that may, for instance,
be organized as an object, procedure, or function. Neverthe-
less, the executables of an identified module need not be
physically located together, but may comprise disparate
instructions stored in different locations that, when joined
logically together, comprise the module and achieve the
stated purpose for the module.
A module of executable code may be a single instruction,

or many instructions, and may even be distributed over sev-
eral different code segments, among different programs, and
across several memory devices. Similarly, operational data
may be identified and illustrated herein within modules, and
may be embodied in any suitable form and organized within
any suitable type of data structure. The operational data may
be collected as a single data set, or may be distributed over
different locations including over different storage devices,
and may exist, at least partially, merely as electronic signals
on a system or network.

Referring now to FIG. 1, there is depicted a high-level
block diagram of an environment 20 suitable for a typical
implementation of the present disclosure. A set of training
data 22 is obtained from actual system sensors or simulated
system performance. Nominal operating regions (or "clus-
ters") are extracted from the training data, typically operating
through an inductive learning module 24, and stored in a
system monitoring knowledge base, or cluster database 26
residing on an electronic storage medium, e.g., a high capac-
ity hard drive. As data are acquired from sensors on an actual,
operating, system, that is, monitored system data, 28, an
outlier detection module 30 compares the data acquired from
monitored system 28 with the clusters of the cluster database
26 to determine the monitored system's performance or status
32. Thus, it will be appreciated that the present disclosure
learns system behavior and stores that knowledge in a data-
base, which is compared with data from actual operating
systems to monitor that system's performance or "health."

FIG. 2 depicts a vector 40 or data vector or a query point or
a training point. The data vector 40 is the basic data structure
of the present disclosure and comprises a set of N parameter
values, P, 42 to Pr, 44. Each vector 40 is an ordered list of data
parameters 42-44 (also referredto as vector elements ormem-
bers). The data parameter values 42-44 are collected from the
training system or the monitored system by a data acquisition
process, or produced by means of a system simulation. In
another embodiment, the vector 40 can contain derived
parameter values computed from the collected data parameter
values and/or parameter values derived from data acquired at
different times (from different data "frames"). The values
used in a given data vector may be collected simultaneously
by the data acquisition system, or collected over a period of
time. The user specifies the size and contents of the vector
structure appropriate for the monitoring application. For
example, the vector 40 may contain values produced by sen-
sors over time, e.g., a calculation of the rate of change of a
sensor over time, or the difference between two sensor values
taken at different times. The values in the vector 40 may be
scaled and normalized as is known to one having ordinary
skill in the art.
FIG. 3 depicts an exemplary data vector 50. The name of

each data parameter is shown above its value. For example,
data parameter 52, Pressure A, has a value of 2857.2. The
names of the other data parameters are Valve 1 Position 54,

T
Pressure B 56, Valve 2 Position 58, Pressure C 60, Tempera-
ture 162, and Temperature 2 64. These data may be acquired
from sensors.
The present disclosure may be advantageously used for

5 those cases in which it is particularly difficult to construct
detailed system diagnostic models of the system (or some
components thereof) due to the complexity or unavailability
of design information. The system monitoring knowledge
bases, or cluster databases, can be constructed entirely from

io several sets of nominal sensor data, either gathered directly
from the sensors of the system to be monitored during actual
operation, or gathered from system simulations, or both. The
system analyzes the nominal system data and forms classes,
or clusters, of expected system sensor values. These classes,

15 or clusters, are used to build a system monitoring knowledge
base. It will be appreciated that the data used to construct
classes of expected sensor values and the system knowledge
database are called "training data" whether obtained from
actual system operation, simulations, or both.

20 FIG. 4 depicts a typical cluster 70. The present disclosure
"learns" the operating characteristics of the system by pro-
cessing training data sets containing nominal system data
collected either from the monitored system itself or from an
accurate simulation of the system, or both. The learning mod-

25 ule 24 (FIG. 1) processes the training data by formatting the
data into the predefined vector format and building a knowl-
edge base containing clusters of related value ranges for the
vector parameters. In some embodiments of the present
invention, each cluster defines a range of allowable values for

30 each parameter in a given vector. In cluster 70, a first cluster
vector 72 comprises the values of the upper limit, that is, a
high value, for the parameters, P1,high to PNhigh, 74 to 76,
respectively; and a second cluster vector 78 comprises the
lower limit, that is, a low value, for the parameters Pi,,,_ to

35 PNio, 80 to 82, respectively. In one embodiment, a cluster
defines a range of values for a subset of the parameters of a
vector. Alternately, a cluster defines a range of values for each
parameter of a vector.

During system monitoring, the parameter values collected
40 from the monitored system for a given vector are compared to

the values of the clusters in the cluster database. If the clusters
were generated from nominal data and if all the values of a
vector from the monitored system fall within or near the
parameter ranges defined by several of these clusters, that

45 vector is deemed to contain nominal data.
FIG. 5 depicts an exemplary cluster 90 for the parameters

of the vector of FIG. 3. The name of each parameter is shown
above the values. The first cluster vector 92 comprises the
high values or upper limits for respective parameters. The

50 second cluster vector 94 comprises the low values or lower
limits for respective parameters. Each data vector can be
considered a point in N-dimensional space where N is the
number of parameters in the vector. As used herein, the term
"vector" and "point" may be used interchangeably.

55 As described above, a cluster defines an interval, that is, a
range of possible values for the parameters in a vector. A
vector representing a point contained in a cluster will contain
a value for each parameter within the range specified in the
cluster for the corresponding parameter. In some embodi-

60 ments of the present disclosure, the high and low values for
each parameter in the vectors in a cluster can be thought of as
points that define the corners of an N-dimensional "minimum
bounding rectangle." All points contained in a cluster may be
contained inside or on an edge of that rectangle. FIG. 5

65 depicts an exemplary cluster showing minimum and maxi-
mum parameter values for the parameters of the vector of
FIG. 3.
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FIG. 6 depicts an example of a two-dimensional minimum
bounding rectangle 900 for an exemplary cluster. The cluster
has two parameters, first and second parameters, P, and Pz,
respectively. The first parameter P, is plotted on the x-axis
920. The second parameter Pz is plotted on the y-axis 940. A
first cluster vector, that defines the upper limits, contains
parameter values (P,,high, P2,high) and forms an upper corner
960 of the minimum bounding rectangle 900. A second clus-
ter vector, that defines the lower limits, contains parameter
values (P1,1­1 P2,,,_) and forms a lower corner 980 of the
minimum bounding rectangle 90. The other corners, 100 and
102, of the minimum bounding rectangle 900 are defined by
the (P1,1­1 P2,high) and (Pi,high, P2,,._) respectively.

FIG. 7 depicts a flowchart of an embodiment of the gen-
eration of a cluster database by the inductive learning module
24 of FIG. 1. In step 110, the inductive learning module 24
typically begins the training process with an empty cluster
database. In step 112, the inductive learning module 24 deter-
mines if any training data are available. If not, in step 114, the
process ends. If, in step 112, the inductive learning module 24
determines that training data are available, in step 116, the
inductive learning module reads the training data and formats
the training data into an input vector. Alternately the inductive
learning module 24 receives real-time training data. In step
118, the inductive learning module determines if the cluster
database is empty. If so, in step 120, the inductive learning
module 24 forms a cluster based on the values of the input
vector, inserts the cluster into the cluster database, and pro-
ceeds to step 112. In one illustrative embodiment, to form the
cluster, the inductive learning module 24 adds predetermined
high initialization values to respective parameter values of the
input vector to form a high value for each parameter of the
cluster, and subtracts predetermined low initialization values
from respective parameters of the input vector to form a low
value for each parameter of the cluster. When a new cluster is
formed from a single input vector, it is frequently advanta-
geous to expand the parameter values of the input vector to
accommodate for data uncertainty and/or to provide for a
more general initial cluster definition.

If, in step 118, the inductive learning module 24 determines
that the cluster database is not empty, in step 122, the induc-
tive learning module 24 determines which cluster in the clus-
ter database has parameter values closest to the input vector.
"Closest" is defined in terms of a defined "distance" between
the input vector and the cluster. To determine the distance, a
variety of definitions for a distance metric can be used. In one
embodiment, the standard Euclidean distance metric deter-
mines a distance D between the input vector and a selected
point in the cluster as follows in Eq. 1:

Eq. 1
D(X, 3) _ ~ FX; - 3;)z 

The distance metric, whether defined by Eq. 1 or an alterna-
tive, typically determines the distance between two vectors or
points in the N dimensional space. Since a cluster will gen-
erally contain more than one vector, determining the distance
from a vector to a cluster involves generalizing the applica-
tion of a distance metric to accommodate a multi-vector clus-
ter. Several procedures can be used. A cluster reference point
within the cluster can be selected and all "distances to the
cluster" defined to be the distance to the cluster reference
point. A centroid value can be computed for each parameter of
the vectors in the cluster and this centroid point used as the
cluster reference point. Other weighted averages of the

8
parameter values or mean parameter values of each vector in
the cluster can also be used to determine a cluster reference
point.
The concept of"distance to a cluster" is not restricted to the

5 use of a single cluster reference point with "distance" deter-
mined according to a distance metric from the input vector to
the reference point. The goal of such a calculation is to pro-
vide a quantitative measure of "nearness" of the input vector
to various clusters in the database such that, in generating the

to 
cluster database, the input vector can be assigned to an exist-
ing cluster or used to initiate another cluster. For system
monitoring, the "nearness" definition should be capable of
distinguishing normal from anomalous system behavior.

15 These criteria can be fulfilled by a "distance" concept involv-
ing several vectors of the cluster as well as the use of a
"distance" to a single exemplary cluster reference point.

For example, in some embodiments of the present inven-
tion, the parameter values of the input vector are compared to

20 the upper and lower parameter values of the vectors of the
cluster and the differences are summed (in some embodi-
ments, taking account of algebraic signs of the differences to
account for input vectors lying within a previously-deter-
mined cluster). Such a multi-vector "distance" concept is

25 used in the example of the Hybrid Combustion Facility
described herein.
Using the Euclidian distance metric of Eq. 1, the parameter

values of the input vector are represented by X, and the
respective parameter values of the cluster reference point are

so represented by Y,. The cluster reference point can be selected
in a variety of ways. For example, in one illustrative embodi-
ment, the cluster reference point is taken to be the cluster
centroid, which is defined as the average of the high and low
values for each parameter in the vectors contained in the

35 cluster. Referring to FIG. 6, point 104 represents the centroid.
In another embodiment, the cluster reference point is defined
as the cluster mean vector constructed using the mean value
of every parameter contained in the cluster. Yet another
embodiment defines a cluster reference point as that vector in

40 the cluster having parameter values as close as possible to
each corresponding parameter value in the input vector.
Using this embodiment, in FIG. 6, point 100 is the closest
point in the cluster to the input vector 106, and the distance D
is determined between points 100 and 106 using the Euclidian

45 distance formula above. Based on the distance from the input
vector to the cluster reference point, D, the inductive learning
module 24 selects the cluster with the shortest distance D to
the input vector as the closest cluster.

Other techniques can also be used for selecting the cluster
5o reference point. Different choices for cluster references

points can affect the performance by altering the parameter
tolerances in individual clusters and the number of clusters in
the final knowledge base. For example, determining the dis-
tance between a vector and the closest point in a cluster rather

55 than the centroid would typically result in shorter distances
and be likely to incorporate more training vectors into fewer
clusters rather than create a larger number of distinct clusters.
Conversely, determining distance from the input vector to the
furthest point in the cluster would be likely to result in a larger

6o number of smaller clusters in the database. Smaller clusters
(i.e., a smaller distance between upper and lower bounds)
would typically provide tighter monitoring tolerances, which
may not be desirable on systems with low accuracy or noisy
sensors. Also, larger numbers of clusters in the database could

65 increase the search time to identify the "nearest' cluster to an
input vector, which may be disadvantageous for monitoring a
system with a high data rate or monitoring with a slower



US 9,336,484 B1
9

computer. A balancing of database size with monitoring tol-
erance for the particular application is typically desirable.

After determining the cluster that is closest to the input
vector, in step 124, the inductive learning module 24 deter-
mines if the input vector is contained within the closest cluster
of step 122. If so, the inductive learning module proceeds to
step 112.

If, in step 124, the inductive learning module determines
that the input vector is not contained within the closest cluster,
in step 126, the inductive learning module determines
whether the parameter values of the input vector are close
enough to include that input vector in the closest cluster. A
"cluster-expansion-distance threshold value," which is speci-
fied by a user, defines a maximum distance between the input
vector and the closest cluster such that the input vector will be
incorporated into the cluster. If the distance from the input
vector to the closest cluster, determined above, is not greater
than the specified cluster-expansion-di stance threshold value,
in step 128, the inductive learning module 24 expands the
closest cluster to include the input vector. In other words, the
cluster parameter ranges are expanded to include the input
vector in the cluster, thereby redefining the extent of the
closest cluster. Step 128 proceeds to step 112.

In another illustrative embodiment of step 128, the cluster
parameter ranges are expanded more than the minimum val-
ues that would include the input vector in the cluster. Such
super-minimum parameter expansion is a useful procedure
for allowing for uncertainty in the data measurements and/or
to further generalize the training examples. The desired
expansion factors can also be specified by the user. For
example, the range for each updated parameter in the cluster
can be expanded by the difference between the value of the
parameter in the input vector and the nearest value to the input
vector, plus a percentage of that value. A 2% expansion factor
is adequate in many cases, particularly in cases with fairly
focused clusters. One could also expand by a percentage of
the difference between the parameter in the input vector and
the cluster centroid. In addition, one could use an expansion
factor to compensate in an approximate way for the estimated
accuracy of the particular sensor generating the parameter.
That is, if a sensor is known to be accurate to approximately
5%, one can add or subtract 5% for the value of that parameter
in the vector. Other correction procedures can also be applied
depending on the particular characteristics of the system
under study and the monitoring application.

If, in step 126, the inductive learning module 24 determines
that the parameter values of the input vector are not suffi-
ciently close to include the input vector in the cluster, the
inductive learning module 24 proceeds to step 120 to form the
input vector into a new cluster. In other words, if the distance
between the input vector and the closest cluster is greater than
the cluster-expansion-distance threshold value (possibly
including any expansion factors), a new cluster is generated
based on the input vector.

It is often advantageous to scale or normalize the data
values before they are inserted into the vectors. Arbitrary
choices for units of measurement can cause some data values
to be represented by large numbers while other data values are
represented by small numbers, tending to skew calculations
by over-weighting the large numbers. This is frequently unde-
sirable and can be ameliorated or avoided by normalizing data
values. Several normalization procedures can be employed.

FIG. 8 depicts a flowchart of an illustrative embodiment of
the inductive learning module 24 that scales or normalizes at
least a subset of the input parametervalues of the input vector.
FIG. 8 is the same as FIG. 7 except for block 132; therefore
the differences will be described. Step 116 reads the data to

10
fill an input vector. In step 134, the inductive learning module
24 scales at least a subset of the input data of the input vector.
In another embodiment, represented by block 132, steps 116
and 134 are combined to scale the input data as they are read

5 and before they are stored in the input vector.
For example, in one embodiment, each parameter is scaled

to represent a percentage (or fraction) of a maximum range
for that parameter, thereby causing every data value, d,, of the
vector to lie in the range between 0 and 100.0, or between 0

io and 1.00. This normalization procedure can be used to give
the user a more intuitive understanding of the monitoring
knowledge database and the significance of any off-nominal
system behavior encountered during system monitoring.
In another embodiment, to scale the data, parameter values

15 are weighted in comparison to other parameters, rather than
being normalized to provide each parameter with substan-
tially equal weight. For example, scaling a parameter to have
a larger possible range relative to other parameters in the
vector will tend to amplify any deviations in that parameter.

20 In addition to those described herein, other combinations
of data normalization and distance metrics may be useful for
various situations and can be empirically determined with
typical training data and, in some embodiments, assumed
off-nominal system data. It will be appreciated that an evalu-

25 ated query point may be scaled or normalized prior to evalu-
ation in the same manner as the training data.

After all of the training data have been processed, the result
is a database of clusters model data (the system monitoring
knowledge base) that characterizes system performance in

30 the operating regimes covered by the training data. Each
cluster defines one set of constraints on the values allowed for
each parameter in any particular monitoring input vector. If
there is no cluster in the monitoring knowledge base that
contains a given input vector or is "near" that input vector,

35 then the system may be behaving in an unexpected manner
indicating a possible system anomaly.
In another illustrative embodiment, the outlier detection

module 30 (FIG. 1) that monitors a system by comparing
incoming data with the clusters in the cluster or knowledge

4o database to determine the "distance" (defined below) from the
incoming sensor data to the nearest knowledge base clusters.
If the incoming sensor data lie sufficiently close to clusters of
the knowledge base derived from nominal system perfor-
mance, the system is deemed to be functioning normally since

45 it is sufficiently close to previous normal behavior. "Suffi-
ciently close" is determined by threshold parameters supplied
by the user to take into account that training data will not
generally span the entire space of normal system operation,
and the sensor data from nominally operating systems are

50 inherently subject to a level of "noise," causing deviations in
data received from sensors even for identically operating
systems.
An important function ofthe outlier detection module 30 is

to monitor system health, and the outlier detection module is
55 not primarily intended to provide thorough system diagnostic

information for off-nominal performance. However, some
diagnostic information is available that can, in some circum-
stances, provide useful guidance. For example, the amount by
which off-nominal data fail to meet the required threshold

60 criteria (that is, the "distance" from the nearest cluster) can
provide information as to the severity of the anomalous per-
formance. In addition, the particular cluster closest to the
suspicious system data can also provide useful guidance as to
the possible nature of the anomalous performance (and/or

65 exclude certain types of system malfunctions).
If the outlier detection module 30 detects off-nominal sys-

tem performance, it can respond in at least one or more of the
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following ways: (a) Alert the operator to the suspicious data,
(b) Activate system diagnostic procedures and/or software,
(c) Alter the mode of system operation in response to the
suspicious data including initiating emergency shut-down, or
(d) Determine the degree of "off-nominal' behavior and/or
the nearest class defining nominal performance. Select one or
more responses based on the results of this determination.

Automatic system health monitoring can significantly ben-
efit from an accurate characterization or model of expected
system behavior, that is, "nominal' behavior. Among the
advantages of the present invention is the avoidance of diffi-
culties often encountered in producing detailed health moni-
toring and/or diagnostic models of some systems and/or com-
ponents, typically arising from the complexity and/or the
unavailability of design information. Many current health
monitoring schemes simply monitor system parameters one-
by-one to ensure they do not exceed predetermined extreme
thresholds. Such monitoring systems may not be able to
detect early signs of anomalous behavior not involving the
beyond-threshold excursion of any one parameter.
Some monitoring systems utilize an "expert" knowledge

base or a detailed system model to provide tighter monitoring
tolerances. Such techniques may not be feasible when system
complexity and/or lack of resources (computing or other-
wise) makes it difficult to develop such detailed models. In
addition, even when such an expert knowledge base or
detailed system model can be constructed, it is frequently too
complex for feasible computer processing in real-time. It is
desired in many applications that system health be monitored
rapidly as the system is in service to detect and commence
ameliorating action before off-nominal behavior becomes
irretrievable or catastrophic.

Other technologies, such as neural networks and decision
trees, have been applied to the monitoring of complex sys-
tems attempting to overcome the modeling difficulties noted
above. Such techniques typically suffer from the limitation of
requiring both nominal and off-nominal training data to pro-
duce a feasible monitoring system. In addition, such moni-
toring systems typically produce system "models" that are
difficult for humans to interpret. Since off-nominal system
data are frequently difficult to obtain, in an illustrative
embodiment the present invention is designed to avoid this
difficulty by building a system monitoring knowledge base
entirely from nominal system data. The resulting knowledge
base clearly shows relationships between system parameters
during normal operation and, in most cases, is easily pro-
cessed to provide real-time (or near real-time) monitoring
ability.
Indexing and Retrieval
An efficient cluster indexing and retrieval method is advan-

tageous in increasing the speed and allowing the outlier detec-
tion module 30 to operate in real-time or near-real-time. In
order to allow searching of the cluster database for the closest
cluster, some embodiments of the indexing and retrieval
scheme include a distance metric by which "closest' is
defined and the ability to return the record of the cluster that
is closest to the query point (input vector), not limited to those
clusters containing the query point. The speed of search and
retrieval should also be sufficiently fast so as to keep up with
the anticipated rate of data acquisition. An efficient indexing
and retrieval scheme can also help to increase the speed of the
initial training process, since training also performs "closest
cluster" queries. Various embodiments of the cluster indexing
and retrieval methods used in connection with the present
invention make use of one or more indexing reference points.

12
Cluster Indexing and Retrieval
FIG. 10 depicts a flowchart of typical illustrative embodi-

ments of a cluster indexing technique employing a single
indexing reference point. In some embodiments, the cluster

5 indexing technique is part of the inductive learning module
24. In some embodiments, the cluster indexing technique is
part of the outlier detection module 30. In other embodi-
ments, the cluster indexing technique is implemented in a
separate module altogether. The cluster indexing andretrieval

io technique typically makes use of the cluster distance concept.
Throughout the discussion of FIG. 10, reference will be

made from time to time to FIG. 11. FIG. 11 depicts clusters
Cl-C23 and their respective cluster reference point on an XY
graph. FIG. 11 further depicts aplurality of partitions that will

15 be explained below. Although FIG. 11 depicts a two-dimen-
sional space, it is to be understood that the concepts disclosed
in FIG. 11 may be expanded to any N-space. It will be further
understood that FIG. 11 is presented for illustrative purposes
only, and should not be deemed limiting on the scope of the

20 present disclosure.
The technique may begin at step 194 by providing a data-

base of cluster summary or modeling data. In step 196, a
value, N, is determined for facilitating a nearest neighbor
search. In particular, the value, N, specifies the number of

25 nearest neighbor points or clusters in relation to a proximity
search. The value, N, may be utilized for data normalization
as well as for specifying the number of closest points or
clusters. In an embodiment of the present disclosure, a user
may be prompted to provide the value, N. In other embodi-

30 ments, the technique may use a predetermined value of N.
In step 198, a normalization value for the training points is

determined and stored. In regard to the training points, the
technique determines the standard deviation of the training
points from their N nearest neighbor points, where N is the

35 value of N determined above. It will be appreciated that the
distance of a query point from their N nearest neighboring
clusters can be expressed in terms of this statistical measure
for better interpretability and consistency across different
data sets.

40 In step 200, an index referencepointis selected. The choice
of the indexing reference point is substantially arbitrary and
can be chosen for convenience of calculation. For example,
the indexing reference point can be the origin (all parameter
values are zero), centrally located to many clusters, among

45 other choices as shown in FIG. 11. In step 202, a distance,
referred to as the ordering distance, from the indexing refer-
ence point to each cluster is determined. As noted above,
"distance to a cluster" can be determined from the indexing
reference point to a cluster reference point selected for each

50 cluster, such as a cluster centroid, or making use of maximum
and minimum values of the distance from the indexing refer-
ence point to cluster members, among other methods. The
ordering distance may be determined using the Euclidian
distance formula described above, among others. Any of the

55 techniques above for determining a cluster reference point
may be used. In FIG. 11, a distance D_ between the origin
218, the selected indexing reference point, and a cluster cen-
troid 220, the selected cluster reference point, for cluster C13,
is shown. Once determined, the distance to each cluster from

60 the indexing reference point may be stored.
In step 204, the entire range of expected values is divided

into partitions. Each partition may span a range. The range
spanned by each partition may be selected by a user. In some
embodiments, the range spanned by each partition is equal. In

65 some embodiments, the range spanned by each partition is not
equal. In FIG. 11, the space is divided into four partitions,
namely, Partitions A, B, C, and D. Each of the ranges may
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form a ring centered on the origin. The use of the Partitions A,
B, C, and D shown in FIG. 11 is exemplary as typically more
partitions are desired. In some embodiments, the number of
partitions may exceed 100 partitions, such as 128 or 256
partitions. In some embodiments, the number of partitions 5

may exceed 1000. A lower bound of each partition may be
defined as a distance from the origin. An upper bound of each
partition may also be defined as a distance from the origin.
The partitions are non-overlapping.

In step 206, the clusters are grouped by partition. That is, io
the clusters are indexed by the distance of their cluster refer-
ence points from the indexing reference point. Clusters with
cluster reference points, e.g., centroids, in a given partition
are grouped together. Each cluster is assigned to only one
group. For example, one group can be constructed containing 15
clusters from 0 to 100 distance units away from the indexing
reference point. A second group having clusters from greater
than 100 to 200 distance units away from the indexing refer-
ence point, and so forth until all clusters are included in at
least one group. For example, referring to FIG. 11, clusters Cl 20
and C2 would be grouped under Partition A. Clusters C3-C9
would be grouped under Partition B. Clusters C10-C16 would
be grouped under Partition C. Clusters C17-C23 would be
grouped under Partition D.

In step 208, the number of training points in each cluster is 25
counted and stored. Referring to FIG. 11, cluster C13 is
shown to contain five training points (the training points in the
other clusters are not shown, but may be assumed to be
present). Instep 210, the distance between the closest point in
each cluster and the indexing reference point is determined 30
and stored. In FIG.11, the closest training point 222 in cluster
C13 has a distance of D P from the origin 218, the selected
indexing reference point. In step 212, the distance between
the furthest point in each cluster and the indexing reference
point is determined and stored. In FIG. 11, the furthest train- 35
ing point 224 in cluster C 13 has a distance of DfP from the
origin 218, the selected indexing reference point.

FIG. 12 depicts an exemplary database table 230 that may
be populated according to the technique described in FIG. 10
using cluster C13 shown in FIG. 11. In particular for each 40
cluster, the technique may determine and store the distance
D_ between the cluster reference point and the indexing
reference point. The technique may also determine and store
the distance D Pbetweenthenearesttrainingpointinacluster
and the indexing reference point. The technique may also 45
determine and store the distance DfP between the furthest
training point in a cluster and the indexing reference point.
The technique may also determine and store the number of
training points in each cluster. The technique may also deter-
mine and store which group a cluster has been assigned, e.g., 50
the partition to which the cluster belongs.

FIGS. 13A-13C depict a flowchart of a technique for out-
lier detection according to an embodiment of the present
disclosure. The inductive learning module 24 and/or the out-
lier detection module 30 may use the technique of FIG. 13A- 55
13C. The technique will be described in the context of the
outlier detection module 30. Again, to facilitate the under-
standing of the cluster indexing technique disclosed in FIGS.
13A-13C, reference will be made from time-time in the below
discussion to FIGS. 11, 14, and 15. FIG. 11 is described 60
above. FIGS. 14 and 15 depict many of the same items that
were depicted in FIG. 11, including clusters Cl-C23 and their
respective cluster reference point on an XY graph. FIG. 14
further depicts a new partition that will be explained below.
Although FIGS. 14 and 15 depict a two-dimensional space, it 65
is to be understood that the concepts disclosed in FIGS. 14
and 15 may be expanded to any N-space. It will be further

14
understood that FIGS. 14 and 15 are for illustrative purposes
only, and should not be deemed limiting on the scope of the
present disclosure.
In step 300, the outlier detection module 30 receives a

query point in the form of a vector, V. The query point, V, may
be training data or may represent real-time data acquired from
sensor readings. For example, in FIG. 11, the location of an
exemplary query point 250 is shown on the graph in relation
to the clusters Cl-C23. In step 302, a distance, DqP, between
the query point and the indexing reference point used to
cluster the training point data is determined. For example, in
FIG. 11, the distance, DqP, between the query point 250 and
the indexing reference point 218 is shown.
At step 304, thepartition, P, in which the query point lies is

determined using the distance DqP between the query point
250 and the indexing reference point 218. Again, the parti-
tions should be the same partitions used to group the clusters
during indexing. For example, in FIG. 11, it can be observed
that the query point 250 falls between the lower and upper
boundaries of Partition C.
In step 306, the group of clusters, G, that fall within the

partition in which the query point lies is selected. For
example, in FIG. 11, the group of clusters, G, in Partition C
includes clusters C10-C16. In step 306, the group of clusters,
G, is set as the initial list of clusters, G,,,. At step 308, a closest
cluster list is initialized and populated by adding clusters
fromthe group, G,,,,totheclosestclusterlist.Theselectionof
the initial clusters from the group, G,,,, may be random.
Alternatively, the selection of the initial clusters may be based
upon the closest clusters in group, G,,,, to the previous query
point that was analyzed. For example, in FIG. 11, cluster C13
has been selected as the initial cluster in the closest cluster list.
In an embodiment of the present disclosure, the closest

cluster list includes a running list of the closest clusters to the
query point as determined by the distance between the query
point and a cluster reference point of a cluster. As will be
explained below, the closest cluster list is continuously
updated when a new closer cluster is found. The furthest
cluster in the list may be removed.
At step 310, the closest cluster list is populated from the

group, G,,,, until the number of training points in the clusters
in the closet cluster list is greater than or equal to the value, N
(determined at step 196 in FIG. 10). At steps 312 and 314, in
the event that the clusters in group, G,,,, do not contain
enough training points to meet or exceed the value, N, then the
technique may expand to investigate adjacent clusters to build
the initial cluster list. For example, in FIG. 11, the technique
may use the clusters in Partitions B and D to populate the
closest cluster list if Partition C does not contain enough
clusters. If at step 312, there are no unexamined partitions,
i.e., the sum of all the training points in all of the clusters does
not meet or exceed the value, N, then the technique will
proceed using the clusters available to step 356 with the
limited data available.
Once the closest cluster list has been built, the technique

will determine if any clusters in group, G,,,, remain unexam-
ined at step 316. If no, the technique will proceed to step 336.
If there exists unexamined clusters in group, G,,,, the tech-
nique will proceed to determine if the unexamined clusters
are closer to the query point, V, than the current clusters on the
closest cluster list. At step 318, a distance, Df, , is determined
between the query point, V, and the furthest cluster on the
closest cluster list. For example, in FIG. 11, the distance, Df,
between the query point 250 and the cluster C13 is shown.
At step 320, a counter, i, is set to 1, and the first unexamined

cluster, C,, in the group, G,,,, is selected. At step 322, the
distance, Dq,, between the query point and the cluster, C,, is
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determined. For example, in FIG. 11, the distance, Dq,,
between the cluster Cll and the query point 250 is shown. At
step 324, it is determined if the distance, Dq,, is less than the
distance, Df. If yes, then at step 326, the cluster, C,, is added
to the closest cluster list because it is closer to the query point
than the furthest cluster on the list.

At step 328, it is determined whether the number of points
in the clusters on the closest cluster list meets or exceeds the
value, N, without the furthest cluster on the closest cluster list.
If yes, then at step 330, the furthest cluster on the closest
cluster list is removed and a new distance value, Df, between
the query point and the new furthest cluster on the closest
cluster list is determined. The technique then proceeds to step
332, where it is determined if an unexamined cluster remains
in cluster group, G,,,. Likewise, if no at steps 324 and 328, the
technique also proceeds to step 332.

At step 332, if an unexamined cluster remains in cluster
group, G,,,, then at step 334, the counter is advanced and the
technique loops to step 322. In this manner, the technique will
continue to replace clusters on the closest cluster list with
other clusters in group, G,,,, that are closer to the query point
than those clusters on the closest cluster list. Once all of the
clusters in cluster group, G,,,, have been examined, the tech-
nique will proceed to step 336.

At step 336, a new partition, P,,, is defined by (Dqp-Df) and
(Dqp+Df). For example, as seen in FIG. 14, new partition, P,,,
has a lower bound, Dib, defined by (Dqp-Df) and an upper
bound, D P, defined by (Dqp+Df). The new partition, P,,,
includes clusters C7, C10-C17, C19-C21, and C23. At step
338, the technique determines if the new partition, P,,, com-
prises any clusters in a new group, G,,, that have not yet been
examined.

If yes, then in step 340, a counter, i, is set equal to 1 to begin
at a first cluster, C,, in the new group, G,,. At step 342, the
distance, Dq,, between the query point and the cluster, C,, is
determined. At step 344, it is determined if the distance, Dq,,
is less than the distance, Df, . If yes, then at step 346, the
cluster, C,, is added to the closest cluster list because it is
closer to the query point than the furthest cluster on the list.
Then, at step 348, it is determined whether the number of
training points in the clusters on the closest cluster list equals
or exceeds the value, N, without the furthest cluster on the list.
If yes, then at step 350, the furthest cluster on the closest
cluster list is removed and the technique loops back to step
336.

If no at steps 344 or 348, the technique proceeds to step
352. At step 352, it is determined whether there exists any
unexamined clusters in the group, G,,. If yes, then in step 354,
the counter, i, is advanced, and the technique loops back to
step 342, which will then determined if the unexamined clus-
ter is closer than the furthest cluster on the closest cluster list.
If no at step 352 or step 338, then the technique proceeds to
step 356. (If this is the case, this means that there is no
possible closer clusters than those clusters on the closest
cluster list.)

At step 356, a summary value for the query point, V, is
determined when the closest cluster list contains all of the
closest clusters to the query point, V, having N nearest neigh-
bor points. In an embodiment of the present disclosure, the
summary value may be the weighted average distance of the
query point, V, to the clusters in the closest cluster list deter-
mined by:
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P Eq. 2
w; d;

N
5

where
p=total number of clusters in closest cluster list,
w=number of training points in a cluster,

to d-distance between query point and a cluster, and
N=number of nearest neighbors.

For example, in FIG. 15, clusters C5, C12, C13 and C21 have
been determined to be the closest clusters to the query point
250. If D,s=10 units, D,,,-13  units, Dc13=15 units, and

15 Dc2,-1 I units, then, using Eq.(2), the summary value would
be (2(10)+4(13)+5(15)+3(11))/14, which is equal to 12.86. It
should be noted that in the event that the furthest cluster on the
closest cluster list contains more training points than is nec-

20 
essary to reach the value, N, then only the points needed to
reach value, N, are utilized.
At step 358, the summary value calculated at step 356 is

standardized. In an embodiment of thepresent disclosure, this
may include dividing the summary value calculated at step

25 356 by the standard deviation of all of the training points from
their N nearest neighbor points, which may have been deter-
mined at step 198 in FIG. 10.

It will be appreciated that at this point, the clusters on the
closest cluster list and the query point, V, are expressed in

30 terms of their weighted scaled values, and at step 358, a
summary or composite deviation value was calculated. At
step 360, the technique will determine how much eachparam-
eter in query point, V, is contributing to that overall composite
deviation calculated at step 358. The required data for this

35 step includes the query point, V, and the list of closest clusters
containing up to N nearest training points. To find the contri-
bution of each parameter, the technique runs through the list
of closest clusters and for each query point parameter, the
techniques calculate how far the query value for that param-

40 eter falls from each cluster (usually from the centroid of the
cluster, but it can also calculate the distance to the edge of the
cluster in that dimension). That distance is multiplied by the
number of training points represented by that cluster, then the
same calculation is performed for the next cluster in the list,

45 keeping a running total of the results for each parameter.
When the furthest cluster in the list is reached, only multiply
by the number of points required to reach a total of N, since
the closest cluster list may represent more than N points.
Then each sum (one per parameter) is divided by N to

5o determine the weighted average distance of each parameter
from the clusters in the closest cluster list. This helps figure
out which parameters of the query point are incongruous and
likely the cause of the detected anomaly. When completed,
each query point will produce k+1 scalar results, the compos-

55 ite deviation, calculated in step 358, and the average distance
of each parameter in the query point to the closest clusters
calculated in step 360.
At step 362, it is determined whether or not the query point

is an outlier. This may be done by comparing the standardized
60 summary value calculated in step 358 to a range of expected

values. If the standardized summary value falls outside of the
range of expected values, then the query point, V, may be an
outlier. If it is determined that the query point, V, is an outlier,
then at step 364 it is determined whether the query point, V, is

65 a training point. If yes, then at step 366, the query point, V, is
removed from the training data and then, at step 368, the
cluster database is regenerated without the query point, V.
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If at step 364, the query point, V, is not training data, this
means that the query point, V, represents real time sensor data.
The technique will proceed to step 370, which will indicates
to a userthat apossible anomaly has occurred. In addition, the
technique may display the weighted average deviation of
each individual query point parameter such that the param-
eters causing the deviation can be determined. This can help
identify the source of the deviation and, in a system health
monitoring application, help isolate and diagnose the cause of
the anomaly. This parameter deviation value can be expressed
in terms of percentage of expected parameter range, standard
deviation of differences calculated for that parameter when
finding nearest neighbor values, or similar normalizing tech-
niques. After step 370, the technique will advance to step 372
to evaluate the next query point.

It will be appreciated that for faster analysis performance,
a smaller number of larger clusters can be used to summarize
the data set, reducing the size of the nearest neighbors search
space.

FIG. 9 depicts an illustrative computer system 550 that
utilizes the teachings of the present invention. The computer
system 550 may implement any of the processes, methods,
and techniques described herein as constituting the present
invention. The computer system 550 comprises a processor
552, a display 554, input interfaces 556, communications
interface 558, memory 560, and output interfaces 562, all
conventionally coupled by one or more busses 564. The input
interfaces 556 comprise a keyboard 566 and mouse 568. The
output interface 562 is a printer 572. The communications
interface 558 is a network interface card (NIC) that allows the
computer 550 to communicate via a network, such as the
Internet. Sensors 574 are also coupled to, or otherwise in
communication with, the processor 552. The sensors 574
supply real-time input data from a monitored system. The
sensors may provide sensor data, such as pressure data, flow
data, positional data, acceleration data, velocity data, and/or
temperature data of a monitored system (not shown). The
sensor data may be utilized to form a query point or query
vector.
The memory 560 generally comprises different modalities,

illustratively semiconductor memory, such as random access
memory (RAM), and disk drives. Depending on the embodi-
ment, the memory 560 may include applications and data.
The memory 560 stores one or a combination of the following
software applications: an operating system 580, an inductive
learning module 24, and an outlier detection module 30. The
memory 560 further stores one or a combination of the fol-
lowing data: training system data 22, a cluster database 26,
and monitored system data 28. The operating system 580 may
be implemented by any conventional operating system such
as UNIX, WINDOWS, and LINUX, among others.
The training system data 22 may typically comprise any of

archived data, nominal data and off-nominal data. The induc-
tive learning module 24 typically comprises a cluster genera-
tion module that, for example, implements the flowchart of
FIG. 7, FIG. 8, or FIG. 10. The outlier detection module 30
typically comprises a cluster retrieve module that, for
example, implements the flowchart of FIGS. 13A-13C.

Various embodiments of the present inventive techniques
are typically incorporated in the inductive learning module
24, the cluster database 26, and the outlier detection module
30. Generally, the inductive learning module 24 and the out-
lier detection module 30 are tangibly embodied in a com-
puter-readable device, carrier or medium, for example,
memory 560, and are comprised of instructions which, when

18
executed, by the processor 552 of the computer system 550,
causes the computer system 550 to perform the techniques
described herein.

Various embodiments of the present invention may be
5 implemented as a method, apparatus, or article of manufac-

ture using standard programming and/or engineering tech-
niques to produce software, firmware, hardware, or any com-
bination thereof. The term "article of manufacture" (or
alternatively, "computer program product') as used herein is

io intended to encompass a computer program accessible from
any computer-readable device, carrier, or media. Those
skilled in the art will recognize that many modifications may
be made to this configuration without departing from the
scope of the present invention.

15 The exemplary computer system illustrated in FIG. 9 is not
intended to limit the present invention. Other alternative hard-
ware environments may be used without departing from the
scope of the present invention.
Outlier Detection and Data Cleaning

20 It will be appreciated by those having skill in the art that the
N nearest neighbors analysis described herein allows the use
of system models to analyze the training data used to build
those models in order to find outlier points in the training data
itself. In most cases it is not desirable to include these outlier

25 points in the nominal system model since they likely repre-
sent off-nominal behavior. In this case, the query point is
simply a point within the training data.

After an initial model is built using the candidate training
data by the learning module 24, an analysis is performed

30 using the model on that same data, calculating the average
distance to the nearest neighbors within the training data set
for each point in the data set using the outlier detection mod-
ule 30. Training data points with larger than typical average
distance scores are likely off-nominal outliers and candidates

35 for elimination from the nominal training data set.
There are two approaches to trimming these outlier points.

The first is user specification of maximum distance score
thresholds. Data points with distance scores above a threshold
are removed from the training data set. The threshold value

40 may vary in different segments of the data to account for
periods of differing system activity. A convenient approach to
implementing this threshold data editing is to graphically plot
the distance scores of the training data points and allow the
user to draw threshold lines on the graph with a mouse or

45 other input device. Points with scores above threshold lines
are discarded from the training data.
A second, more automated, approach to trimming outlier

points incorporates techniques from statistical process con-
trol or other change detection methods. In this method the

50 sequence of nearest neighbor distance scores are analyzed by
a change detection method, such as Shewhart Control Charts,
CUSUM, or EWMA charts. These methods track the varia-
tion of data values in the entire data set, or within a moving
window of the set, and identify values that are unusual relative

55 to the other data points. For instance, in the control chart
technique any points with values outside of three standard
deviations from the mean are considered unusual (other con-
ditions, documented in the literature, can also qualify as
unusual). Points deemed unusual by change detection analy-

60 sis which fall above the mean or expected distance value are
candidates for removal from the training data set. Since dis-
tances are always non-negative, an alternate approach is to
consider deviation above zero rather than the mean data value
or other baseline value used by the change detection method.

65 After the training data set has been updated with either of
these data cleaning approaches, the remaining training data
are used to build an updated system model. The data cleaning
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process may be iterative, repeating the process using the
updated model and data to remove any outliers that may have
been missed on previous passes. The techniques are also used
for incorporating new data into existing training data sets. The
new data are analyzed with the existing model to find and 5

remove outliers before they are added to the training data set
and incorporated into an updated system model.

Outside of data cleaning activity, the change detection
approach described above can be used to detect unusual
events in real-time monitoring of operations data or analysis io
of archived data not included in the training data set. The
application of change detection methods to an analysis results
provides an analytical approach to discovering system
anomalies and determining when to alert the operators or
analysts. This is particularly useful in monitoring dynamic 15
systems where a fixed alert threshold may not be appropriate
for all phases of operation.
Parameter Weight Adjustment
As described above, the present invention considers mul-

tiple system parameters of a query point simultaneously. 20
Typically, some parameters of a query point may provide
more information about system health than others, and their
values should be more influential in the overall health assess-
ment. To accomplish this, in an embodiment of the present
disclosure, the inductive learning module 24 or the outlier 25
detection module 30 may assign a numeric weight to each
monitored parameter that increases or decreases the relative
contribution of that parameter to the calculated distance
scores.
As described above, the present invention provides the 30

option of calculating the contribution of each individual
parameter to any given deviation distance calculation. These
contribution values reflect the average distance of the param-
eter value from the corresponding parameter value in the N
nearest points. These parameter contributions can be deter- 35
mined for points in the training data to provide the additional
capability of weight adjustment using only the initial training
data set.

Cleaned, nominal data sets are used for parameter weight
adjustment, or tuning. A knowledge base (model) is built 40
from designated training data using initial or default param-
eter weights. Then the nominal data sets are analyzed with
that knowledge base using a "calculate parameter contribu-
tion" option. Outlier or unusually high composite distance
scores are identified using the threshold or change detection 45
methods described previously, usually with more stringent
outlier designation criteria. Since the analyzed data are
known nominal data, it is desirable to reduce or eliminate
these higher distance scores. The individual parameter con-
tributions are considered for each point identified in the data 50
set with a higher distance score. A summary of the contribu-
tion of each parameter to those scores is calculated, typically
the mean parameter deviation for all of those points, or the
maximum parameter deviation for any one point. Other sum-
marizing metrics can also be used. This summary results in a 55
single value for each parameter that reflects its contribution to
the higher distance scores. Since the goal is to reduce those
scores, the weights on the parameters with the highest con-
tributions are decreased. This is done by reducing the weight
of each parameter proportional to the amount of contribution 60
of that parameter, with the weights of the largest contributors
reduced by the highest percent.

The relative weight reduction versus parameter contribu-
tion is selectable by the user to influence the granularity of the
weight tuning Smaller adjustments with multiple iterations of 65
the weight adjustment process will result in more precise
tuning at the expense of a longer tuning process. Once the

20
weights are adjusted according to parameter contributions,
the knowledge base is updated with the new weights and the
weight adjustment routine is repeated until most or all sig-
nificant distance deviations are eliminated from the nominal
data analyses.
In some installations, the users are accustomed to system

monitoring scores within a certain range. For instance, they
may want to set fixed alert limits on their monitoring work-
stations and prefer that nominal system behavior typically
display distance scores between zero and three, while dis-
tance values above five warrant additional attention.

Since each monitored system has unique characteristics,
the typical "normal' distance range can vary between sys-
tems. It is possible to influence the "normal' range in most
cases by increasing or decreasing the parameter weights as a
group or adjusting the knowledge base build parameters that
influence the size of the generated clusters. A process similar
to the individual parameter weight adjustment described pre-
viously can be used to accomplish this "normal' distance
range tuning. In this case, the composite deviation distance
for nominal data sets is summarized with the same techniques
as used for the individual parameter contribution summaries
above (e.g., determining the mean value of the calculated
distance for all points in the nominal data set). This summary
value is compared to the desired value range, and the weights
orknowledge base build parameters are adjusted accordingly.
If the actual value is higher than the desired value, all of the
data parameter weights are decreased and/or knowledge base
build parameters (extrapolation and initial tolerance) are
adjusted to increase the size of the generated clusters. The
opposite adjustments are made if the actual values need to be
increased to meet the desired values. The amount of weight or
parameter adjustment is relative to the difference between the
desired and actual values. The process is iterated until desired
values are achieved.
Automated Knowledge Base Generation and Online Model
Updates

It will be appreciated that the techniques described above
for cleaning training data and adjusting parameter weights
enable automation of the model building process for distance-
based health monitoring applications. Starting with a repre-
sentative data set collected from the target system, the data
cleaning techniques are used to remove off-nominal points
from that data and create a nominal training data set. Next, the
parameter weight adjustment routines are applied to set suit-
able weights. A new knowledge base (system model) is then
generated with the cleaned data using the updated parameter
weights. This effectively provides a "one button" monitoring
system generation capability by automating many steps of the
process that were previously performed manually.

Additionally, the data cleaning and weight adjustment
techniques can be incorporated into real-time monitoring rou-
tines to update system models online during system monitor-
ing operations. Incoming data not deemed off-nominal by the
change detection or threshold routines would be automati-
cally incorporated into the system model, continuously refin-
ing it to provide better monitoring performance. In the event
that normal system operation resulted in excessive monitor-
ing deviations, the weight adjustment routines would be acti-
vated to retune the system model. The returned model would
better characterize the additional nominal system behavior
information that had been observed online but was not
included in the original training data set.

In the foregoing Detailed Description, various features of
the present disclosure are grouped together in a single
embodiment for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflecting
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an intention that the claimed disclosure requires more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment. Thus,
the following claims are hereby incorporated into this
Detailed Description of the Disclosure by this reference, with
each claim standing on its own as a separate embodiment of
the present disclosure.

It is to be understood that the above-described arrange-
ments are only illustrative of the application of the principles
of the present disclosure. Numerous modifications and alter-
native arrangements may be devised by those skilled in the art
without departing from the spirit and scope of the present
disclosure andthe appended claims are intendedto cover such
modifications and arrangements. Thus, while the present dis-
closure has been shown in the drawings and described above
with particularity and detail, it will be apparent to those of
ordinary skill in the art that numerous modifications, includ-
ing, but not limited to, variations in size, materials, shape,
form, function and manner of operation, assembly and use
may be made without departing from the principles and con-
cepts set forth herein.

What is claimed is:
1. A method of detecting anomalies in a behavior of a

system implemented by a processor coupled to a memory, the
memory having stored therein a set of instructions, that when
executed by the processor, cause the processor to perform the
method comprising:
(a) providing cluster modeling data for a plurality of clus-

ters to an outlier detection module, the cluster modeling
data identifying a number of training points in each of
the plurality of clusters;

(b) receiving a query point at the outlier detection module,
the query point comprising a plurality of parameters, the
query point including training data provided by the plu-
rality of sensors in real-time or near real-time, wherein
the sensors provide sensor data, wherein the sensor data
including at least one of pressure data, flow data, posi-
tion data, acceleration data, velocity data and tempera-
ture data, wherein the sensor data utilized to form the
query point;

(c) generating a group of closest clusters that is closest to
the query point from the plurality of clusters, using the
outlier detection module and determining if the group of
the closest cluster is satisfied a threshold value, wherein
the threshold value is a user-defined value;

(d) determining a weighted distance value between the
query point and each cluster in the group of closest
clusters using the outlier detection module, wherein the
weighted distance value, WDV, between the query point
and each cluster in the group of closest clusters is deter-
mined by:

WDV=nd

where n is the number of the training points in a cluster and d
is the distance between the cluster and the query point;
(e) generating a summary distance value for the query point

by combining the weighted distance values between the
query point and each of the clusters using the outlier
detection module; and

(f) determining if the query point is an outlier based upon
the summary distance value using the outlier detection
module.

2. The method of claim 1, further comprising determining
a weighted average deviation of each of the plurality of
parameters of the query point.

22
3. The method of claim 1, further comprising acquiring

sensor readings from a plurality of sensors and forming val-
ues for the query point based upon the sensor readings.

4. The method of claim 3, further comprising forming
5 values for the query point from sensor readings taken over

time.
5. The method of claim 1, further comprising removing the

query point from training data if the query point is an outlier.
6. The method of claim 1, further comprising normalizing

10 the summary distance value and displaying the normalized
summary distance value on a display.

7. The method of claim 1, wherein step (c) further com-
prises determining the group of closest clusters to the query

15 point from the plurality of clusters such that a sum of a
number of training points in the group of closest clusters
equals or exceeds a predetermined value.

8. The method of claim 7, further comprising adding a
cluster to the group of closest clusters whose distance from

20 the query point is closer than a cluster in the group of closest
clusters.

9. The method of claim 8, further comprising removing a
cluster from the group of closest clusters whose distance is
further from the query point than a cluster added to the group

25 
of closest clusters.
10. A system for detecting an anomaly in a behavior of a

system, comprising:
a processor;
a memory coupled to the processor;

30 
a plurality of input and output devices coupled to the pro-

cessor, the plurality of devices including a plurality of
sensors, and

a data storage coupled to the processor having cluster mod-
eling data for a plurality of clusters stored therein, the

35 
cluster modeling data comprising a number of training
points in each of the plurality of clusters;

the memory having stored therein a set of instructions, that
when executed by the processor, cause the processor to
perform the operations of:

40 
receive a query point comprising a plurality of parameters

including training data provided by the plurality of sen-
sors in real-time or near real-time, wherein the sensors
provide sensor data, wherein the sensor data including at
least one of pressure data, flow data, position data, accel-

45 
eration data, velocity data and temperature data, wherein
the sensor data utilized to form the query point;

generate a group of closest clusters that is closest to the
query point from the plurality of clusters,

determine if the group of the closest cluster is satisfied a

50 
threshold value; wherein the threshold value is a user-
defined value;

determine a weighted distance value between the query
point and each of the clusters in the group of closest
clusters,

55 
wherein the weighted distance value, WDV, between the

query point and each cluster in the group of closest
clusters is determined by:

WDV=nd

60 where n is the number of the training points in a cluster and
d is the distance between the cluster and the query point,

generating a summary distance value for the query point by
combining the weighted distance values between the
query point and each of the clusters using the outlier

65 detection module, and
determine if the query point is an outlier based upon the
summary distance value.



US 9,336,484 B1
23 24

11. The system of claim 10, wherein the parameters of the
query point are determined from the sensor data.

12. The system of claim 10, wherein the set of instructions,
that when executed by the processor, are further operable to
cause the processor to determine a weighted average devia- 5

tion of each parameter of the query point.
13. The system of claim 10, wherein the set of instructions,

that when executed by the processor, are further operable to
cause the processor to normalize the summary distance value.

14. The system of claim 10, wherein the set of instructions, io
that when executed by the processor, are further operable to
cause the processor to determine the group of closest clusters
to the query point from the plurality of clusters such that a
sum of the number of training points in the group of closest
clusters equals or exceeds a predetermined value. 15

15. The system of claim 14, wherein the set of instructions,
that when executed by the processor, are further operable to
cause the processor to add a cluster to the group of closest
clusters whose distance from the query point is closer than a
cluster in the group of closest clusters. 20

16. The system of claim 15, wherein the set of instructions,
that when executed by the processor, are further operable to
cause the processor to replace a cluster in the group of closest
clusters with a cluster whose distance from the query point is
closer than the replaced cluster. 25

17. The system of claim 10, wherein the cluster modeling
data for the plurality of clusters further comprises a distance
value for each cluster from an indexing reference point.

18. The system of claim 17, wherein the set of instructions,
that when executed by the processor, are further operable to 30
cause the processor to determine a distance between the query
point and the indexing reference point.
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